MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY

SYLLABUS BACHELOR OF SCIENCE IN NUCLEAR ENGINEERING

MARCH 2024

Department of Nuclear Science and Engineering Military Institute of Science and Technology Mirpur Cantonment Dhaka-1216, Bangladesh

COMMITTEE OF COURSES

References:

- A. MIST Letter Number 23.12.0902.002.01.082.23 dated 20 December 2023.
- B. BUP Letter Number 23.01.902.858.10.786.124.24.01.24 Dated 31 January 2024.
- 1. The syllabus of the Department of Nuclear Science and Engineering (NSE) of Military Institute of Science and Technology (MIST) has been reviewed by a committee of courses was formed by BUP. The meetings of the committee were held on 24 and 28 March 2024 to review the syllabus for the aforementioned program.
- 2. Finally, the committee of Courses proposed the subject matter to refer to Academic Council.

-			
v	PACIA	an	t.
	resid		ı.

Colone Ashfaquer Rahat Siddique, BGBMS

Head

Department of NSE, MIST

Members (Internal):

Brigadier General S M Zia-Ul-Azim ndc, afwc, psc

Dean

Faculty of Science and Engieering, MIST

Md. Azizur Derliman
Dr. Md Azizur Rahman

Professor

Department of NSE, MIST

Dr. Abdus Sattar Mollah

Professor

Department of NSE, MIST

Dr. Mokhlesur Rahman
Professor
Department of NSE, MIST

Major Md Zafar Sadique, Engrs
GSO-2
Department of NSE, MIST

(S)

Major Md Tanvir Hasan, AEC Instructor Class B Department of Sc & Hum, MIST

Md Asaduzzaman

Lecturer

Department of Sc & Hum, MIST

Members (Bangladesh University of Professionals):

(mon)
Brigadier General Md Mustafa Kamal, SGP Dean Faculty of Science and Technology (FST) Bangladesh University of Professionals
-skelmer
Brigadier General Md Mahbubur Rahman Siddiqui, ndc, afwc, psc, M. Phill Inspector of College Bangladesh University of Professionals
Members (External):
Dr. Md Shafiqul Islam Professor Department of Nuclear Engineering (NE) Dhaka University
Dr. Afroza Shelly Professor Department of Nuclear Engineering (NE) Dhaka University

Dr. Md, Shawkat Akbar

Bangladesh Atomic Energy Commission (BAEC), Dhaka

Dr. Debashis Datta

Chief Engineer, Nuclear Safety & Security Division Bangladesh Atomic Energy Regulatory Authority (BAERA), Dhaka 200

Dr. Mohammad Jahangir Alam

Director

Institute of Nuclear Power Engineering, BUET

AGolam

Engr. Dr. Md. Abdus Salam

Member

Bangladesh Atomic Energy Commission (BAEC), Dhaka

خانكامه.

Engr Md. Ali Zulquarnain

Ex-Chairman

Bangladesh Atomic Energy Commission (BAEC), Dhaka

@ ASSAN

Dr. Sariful Haque Bhuiya Director (Training and Planning) Bangladesh Institute of Nuclear Agriculture

Dr. Anwar-ul-Azim

Principal Scientific Officer & Head, In-Vitro Division National Institute of Nuclear Medicine & Allied Sciences (NINMAS)

Member Secretary:

Lieutenant Colonel Md Faisal Kader, PhD, EME

Instructor Class A

Department of NSE, MIST

CONTENTS

CHAP	TER 1		
GENE	RAL INF	ORMATION	
1.1		Introduction to MIST	1
1.2		Vision and Mission of MIST	1
1.3		Salient Features of MIST	2
1.4		Location	2 2 2
1.5		Faculties	2
1.6		Eligibility of Students for Admission in MIST	3
1.7		Number of Seats	4
1.8		Admission Procedure	4
	1.8.1	Syllabus for Admission Test	4
	1.8.2	Final Selection	5
	1.8.3	Medical Checkup	5
1.0	1.0.0	-	
1.9		Students Withdrawal Policy	5
	1.9.1	General Policy of Withdrawal	5
	1.9.2	Withdrawal on Disciplinary Ground	6
	1.9.3	Withdrawal on Own Accord	6
CHAP	TER 2		
		EGULATIONS FOR UNDERGRADUATE PROGRAMME	
AT M			
2.1		Introduction	7
2.2		The Course System	7
2.3		Number of Terms in a Year	7
2.4		Duration of Terms	7
2.5		Course Pattern and Credit Structure	8
2.6		Course Distribution System	8
2.7		Assignment of Credits	9
2.8		Types of Courses	9
2.9		Course Offering and Instruction	9
2.10		Teacher Student Interaction	10
2.11		Students' Advisor	10
2.12		Course Registration	10
2.13		Registration Procedure	10
2.14		Pre-conditions for Registration	10
2.15		Registration Deadline	1.
2.16		Penalty for Late Registration	1.
2.17		Limits on the Credit Hours to be Taken	1.
2.18		Course Add/Drop	1
2.19		Withdrawal from a Term	12
2.20		The Grading System	12
2.21		Marks Distribution	13
	2.21.1	Theory	13

	2.21.2	Sessional/Practical Examinations	13
	2.21.3	Sessional Course in English / Russian	14
	2.21.4	Class Attendance	14
2.22		Calculation of GPA	14
2.23		Minimum Earned Credit and GPA Requirement for Obtaining Degree	15
2.24		Minimum Earned Credit and GPA Requirement for Obtaining Degree Additional Course)	15
2.25		Impacts of Grade Earned	16
2.26		Classification of Students	16
2.27		Definition of Graduating Student	17
2.27		Performance Evaluation	17
2.29		Application for Graduation and Award of Degree	17
2.30			17
2.30		Time Limits for Completion of Bachelor's Degree	
2.31	2 21 1	Attendance, Conduct and Discipline	17
	2.31.1	Attendance	18
2 22	2.31.2	Conduct and Discipline	18
2.32		Teacher-Student Interaction	18
2.33		Absence during a Term	18
2.34		Recognition of Performance	18
2.35		Types of Different Examinations	18
2.36		Rules of Different Examinations	19
	2.36.1	Term Final Examination	19
	2.36.2	Supplementary Examination	19
	2.36.3	Improvement Examination	21
2.37		Irregular Graduation	21
	PTER 3	OF NUCLEAR SCIENCE AND ENGINEERING (NSE)	
3.1		Introduction to the Program	22
3.2		Vision and Mission of the Program	22
3.3		Program Educational Objectives (PEOs)	22
3.4		Program Outcomes (POs)	23
3.5		Learning Outcomes (LOs)	24
3.6		Generic Skills	24
3.7		Curricular/Skill Mapping	25
	PTER 4		
COU	RSE CURF	RICULUM OF BACHELOR OF SCIENCE IN NE	
4.1		Introduction	26
4.2		List of Core Courses	26
4.3		List of Elective Courses	27
4.4		List of Interdisciplinary Courses and General Education Courses	28

4.5		Term Wise Distribution of Courses for B.Sc. Engg. in Nuclear Engineering (NE)	29
	4.5.a	Level – 1, Term – I	29
	4.5.b	Level – 1, Term – II	29
	4.5.c	Level – 2, Term – I	30
	4.5.d	Level – 2, Term – II	30
	4.5.e	Level – 3, Term – I	31
	4.5.f	Level – 3, Term – II	31
	4.5.g	Level – 4, Term – I	32
	4.5.h	Level – 4, Term – II	32
4.6		Summary of Credit Distribution - Level and Termwise	33
4.7		Summary of Theory and Sessional Courses- Level and Termwise	33
4.8		Summary of Departmental Theory and Sessional Courses - Level and Termwise	34
4.9		Summary of Departmental, Inter-disciplinary, Basic Science and General Education Courses	35
4.10		Teaching Strategy	36
4.11		Assessment Strategy	36
CHAI	PTER 5		
COUI	RSE DESC	CRIPTION	
5.1		Core Courses Offered	38
5.2		Elective Courses Offered	192
CHAI	PTER 6		
Cours	ses offered	by other Departments to NE Students	
6.1	6.1.1	Department of Science and Humanities	228
	6.1.2	Department of Electrical, Electronic & Communication Engineering	283
	6.1.3	Department of Computer Science and Engineering	298
	6.1.4	Department of Mechanical Engineering	304
	6.1.5	Department of Industrial and Production Engineering	313
APPE	ENDIX A		
EOUI	IVALENC	E TABLE	318

CHAPTER 1

GENERAL INFORMATION

1.1 <u>Introduction to MIST</u>

The necessity of establishing a technical institute for the Bangladesh Armed Forces was felt in the late eighties. In the absence of such an institution, officers of Bangladesh Armed Forces had been graduating from Bangladesh University of Engineering and Technology (BUET), Bangladesh Institute of Technology (BIT) and other foreign institutions of science and technology. With a view to meet the increasing demand for the development and dissemination of engineering and technological knowledge, Bangladesh Armed Forces established the Military Institute of Science and Technology (MIST) that promises to provide facilities for higher technical education both for the officers of Bangladesh Armed Forces as well as for civil students from home and abroad. The motto of MIST is —Technology for Advancement. Founded on 19 April 1998, MIST started its journey on 31 January 1999 by offering a four-year bachelor's degree on Civil Engineering. Bachelor degree on Computer Science Engineering course started on 2001. Bachelor courses on Electrical, Electronic & Communication Engineering and Mechanical Engineering started its journey from 2003. Bachelor of Science program on Aeronautical Engineering (AE) and Naval Architecture and Marine Engineering (NAME) program were started from 2008-2009 and 2012-2013 respectively. Besides, four new departments started their academic session from 2014-2015 i.e. Nuclear Science & Engineering (NSE), Biomedical Engineering (BME), Architecture (Arch) and Environmental, Water Resources & Coastal Engineering (EWCE).

Foreign students from Sri Lanka were admitted for the first time at MIST. Presently students from Maldives, Palestine, Nepal and Ghambia are also studying in different Engineering Programs. MIST envisages creating facilities for military as well as civil students from home and abroad dedicated to pursue standard curriculum leading to Graduation Degree. As an Institution without any gender biasness, MIST is already on steady stride upholding its motto "Technology for Advancement". MIST remains committed to contributing to the wider spectrum of national educational arena and play a significant role in the development of human resources and ardently pursuing its goal to grow into a "Centre of Excellence". MIST has well equipped class rooms with multimedia and web camera with internet facilities and laboratories with modern equipment. The medium of instruction for all engineering programs is English. All academic programs of MIST are affiliated with the Bangladesh University of Professionals (BUP) and have close cooperation with Bangladesh University of Engineering and Technology (BUET) and Dhaka University (DU).

1.2 <u>Vision and Mission of MIST</u>

Vision: To be a center of excellence for providing quality education in the field of science, engineering and technology and conduct research to meet the national and global challenges.

Mission:

a. Provide comprehensive education and conduct research in diverse disciplines of science, engineering, technology and engineering management.

- b. Produce technologically advanced intellectual leaders and professionals with high moral and ethical values to meet socio- economic development of Bangladesh and global needs.
- c. Conduct collaborative research activities with national and international communities for continuous interaction with academician and industry.
- d. Provide consultancy, advisory, testing and other related services to government, non-government and autonomous organization including personnel for widening practical knowledge and to contribute in sustainable development of the society.

1.3 Salient Features of MIST

- a. Rigorous admission and selection process for best possible screening interactive sessions in the classroom.
- b. Regular guest lectures and educational visits.
- c. Culture of timeliness, commitment and uninterrupted curriculum.
- d. Flexibility in choosing competent faculties through outsourcing.
- e. Well thought-out and continuous feedback and assessment system.
- f. Effective teaching through innovative method.
- g. Industrial attachment for on job training.
- h. Emphasis on code of conduct and dress code.
- i. Focus to develop students as good human with all possible attributes of successful leader.
- j. Tranquil, pollution free and secure campus life.

1.4 Location

MIST is located at Mirpur Cantonment, northwest edge of the greater Dhaka city, a hub of knowledge for the armed forces. Mirpur Cantonment is a small, calm and quiet education village and free from all possible pollution of a city life. A garland like lake with migratory birds, three sides with extended green fields in the summer and water bodies in the rainy season, whistling birds on the tree branches and overall bounty of nature adds to the already existing splendid academic atmosphere. Other neighboring academic institutions are National Defense College (NDC) and Defense Services Command and Staff College (DSCSC) – two international standard education centers.

1.5 <u>Faculties</u>

- 1.5.1 Faculty of Civil Engineering (FCE):
 - Civil Engineering (CE)
 - Architecture (Arch)
 - Civil, Environment, Water and Coastal Engineering (CEWCE)
 - Petroleum and Mining Engineering (PME)

- 1.5.2 Faculty of Electrical & Computer Engineering (FECE):
 - Computer Science and Engineering (CSE)
 - Electrical, Electronic and Communication Engineering (EECE)
- 1.5.3 Faculty of Mechanical Engineering (FME):
 - Mechanical Engineering (ME)
 - Aeronautical Engineering (AE)
 - Naval Architecture and Marine Engineering (NAME)
 - Industrial and Production Engineering (IPE)
- 1.5.4 Faculty of Science & Engineering (FSE):
 - Biomedical Engineering (BME)
 - Nuclear Science and Engineering (NSE)
 - Department of Science (Mathematics, Physics, Chemistry) and Humanities (Only Post Graduate)

Presently MIST has 12 (twelve) departments to conduct B Sc. Engineering program under 04(four) different engineering faculties. The departments impart education basing on common objectives and outcomes set by MIST and have defined program objectives and outcomes, specific to the departments respectively

1.6 Eligibility of Students for Admission in MIST (Subject to review each year)

The students must fulfill the following requirements:

- a. **<u>Bangladeshi Students.</u>** Minimum qualifications to take part in the admission test are as follows:
 - (1) The applicant must have passed SSC / equivalent examination from Board of Intermediate and Secondary Education/Madrasa Education Board/Technical Education Board in Science Group obtaining GPA 4.00 (without fourth subject) on a 5 point scale and in HSC/Equivalent examination from Board of Intermediate and Secondary Education/Madrasa Education Board/Technical Education Board in Science group the applicant must have obtained minimum GPA 4.00 on a 5 point scale. In HSC/Equivalent and SSC/Equivalent examination: (i) the applicant passed HSC or Equivalent in must obtain minimum total grade point 17 in four subjects (Mathematics, Physics, Chemistry and English), (ii) SSC Examination (or Equivalent).
 - (2) The applicant must have qualified in minimum five subjects including Mathematics, Physics, Chemistry and English Language with minimum 'B' in average [i.e. A=5, B=4, C=3, D=2 & E=1,minimum required grade point=20] in GCE 'O' Level and in 'A' level/Equivalent background of Minimum 'B' grade in Mathematics, Physics and Chemistry.
 - (3) Applicants who have passed HSC or Equivalent examination in the current previous year must grade obtain 19 in four subjects (Mathematics, Physics, Chemistry and English).
 - (4) Sex: Male and Female.

- b. <u>Foreign Students.</u> Maximum 3% of overall vacancies available will be kept reserved for the foreign students and will be offered to foreign countries through AFD of the Government of the People's Republic of Bangladesh. Applicants must fulfill the following requirements:
 - (1) Educational qualifications as applicable for Bangladeshi civil students or equivalent.
 - (2) Must have security clearance from respective Embassy/High Commission in Bangladesh.
 - (3) Sex: Male and Female.

In the event of non-availability of foreign students, Bangladeshi civil candidates will fill up the vacancies.

1.7 Number of Seats

The highest number of seats for 04 (Four) years Bachelor Degree in Engineering programmes (Unit – A) and 5 (Five) years Bachelor Degree of Architecture programme are as follows:

Allocation of Seats

Ser	Unit	Department	
1.		Civil Engineering (CE)	60
2.		Computer Science and Engineering (CSE)	60
3.		Electrical, Electronic & Communication Engineering (EECE)	60
4.		Mechanical Engineering (ME)	60
5.		Aeronautical Engineering (AE)	50
6.	${f A}$	Naval Architecture and Marine Engineering (NAME)	40
7.		Biomedical Engineering (BME)	40
8.		Nuclear Science and Engineering (NSE)	40
9.		Civil & Environmental Engineering	60
10.		Civil & Water Resources Engineering	
11.		Industrial and Production Engineering (IPE)	50
12.		Petroleum and Mining Engineering (PME)	25
13.	В	Architecture (Arch)	25
	Total		570

1.8 Admission Procedure

1.8.1 Syllabus for Admission Test. Admission test will be conducted on the basis of the syllabus of Mathematics, Physics, Chemistry and English (comprehension and functional) subjects of HSC examinations of all boards of secondary and higher secondary school certificates. There will be no multiple-choice type questions (MCQ). Admission test will be conducted out of 200 marks and the distribution of marks is given below:

Ser.	Subjects	Marks
a.	Mathematics	80
b.	Physics	60
c.	Chemistry	40
d.	English	20
		Total = 200

- **1.8.2** <u>Final Selection</u>. Students will be selected on the basis of results of the admission test. Individual choice for selection of departments will be given preference as far as possible. Minimum qualifying marks in the test is 40% for the applicants. In case of tie in the result of admission test, difference will be judged on the basis of marks obtained in Mathematics, Physics, Chemistry and English respectively in admission test.
- **1.8.3** <u>Medical Checkup.</u> Civil candidates selected through admission test will go for medical checkup in MIST medical center. If the medical authority considers any candidate unfit for study in MIST due to critical/contagious/mental diseases as shown in medical policy of MIST will be declared unsuitable for admission.

1.9 Students Withdrawal Policy

1.9.1 General Policy of Withdrawal

The under graduate (B.Sc) Engineering programs for all engineering disciplines are planned for 04 regular levels, comprising of 08 regular terms for Architecture programme it is planned for 3 & regular levels, comprising of 10 regular terms. It is expected that all students will earn degree by clearing all the offered courses in the stipulated time. In case of failure the following policies will be adopted:

- a. Students failing in any course/subject will have to clear/pass the said course/subject by appearing it in referred examination as per examination policy. In case of students completing level-4, maximum three courses/subjects will be allowed in the referred examination (which is to be cleared within 6 years of registration).
- b. Referred examination will be conducted at this institution before commencement of next level.
- c. Maximum grading for supplementary examination etc. of failed subjects will be B+ as per examination policy.
- d. One student can retake/reappear in a failed subject/course only twice. However, with the Permission of Academic Council of MIST, a student may be allowed for third time as last chance.
- e. In case of sickness, which leads to missing of more than 40% classes or miss term final examination (supported by requisite medical documents), students may be allowed to withdraw temporarily from that term and repeat the whole level with the regular level in the next academic session, subject to the approval of Academic Council, MIST. However, he/she has to complete the whole undergraduate

- program within 06 (six) academic years (for Architecture 07 academic years) from the date of his/her registration.
- f. Minimum credit requirement for the award of bachelor's degree in Engineering (Bsc. Engg) and Architecture (B. Arch) will be decided by the respective department as per existing rules. However, the minimum CGPA requirement for obtaining a bachelor degree in engineering and Architecture is 2.20.
- g. Whatever may be the cases, students have to complete the whole undergraduate Program within 06 (six) academic years from the date of registration.
- h. All other terms and condition of MIST Examination Policy remain valid.

1.9.2 Withdrawal on Disciplinary Ground

- a. <u>Unfair Means</u>. Adoption of unfair means may result in expulsion of a student from the programme and expulsion so from the Institution. The Academic Council will authorize such expulsion on the basis of recommendation of the Disciplinary Committee, MIST and as per policy approved by the affiliating university. Following would be considered as unfair means adopted during examinations and other contexts:
- (1) Communicating with fellow students for obtaining help in the examination.
- (2) Copying from another student's script/ report /paper.
- (3) Copying from desk or palm of a hand or from other incrimination documents.
- (4) Possession of any incriminating document whether used or not.
- b. <u>Influencing Grades.</u> Academic Council may expel/withdraw any student for approaching directly or indirectly in any form to influence a teacher or MIST authority for grades.
- c. <u>Other Indiscipline Behaviours.</u> Academic Council may withdraw/expel any student on disciplinary ground if any form of indiscipline or unruly behavior is seen in him/her which may disrupt the academic environment/programme or is considered detrimental to MIST's image.
- d. <u>Immediate Action by the Disciplinary Committee of MIST</u>. The Disciplinary Committee, MIST may take immediate disciplinary action against any student of the Institution. In case of withdrawal/expulsion, the matter will be referred to the Academic Council, MIST for post-facto approval.

1.9.3 Withdrawal on Own Accord

- a. **Permanent Withdrawal.** A student who has already completed some courses and has not performed satisfactorily may apply for a withdrawal.
- b. <u>Temporary Withdrawal.</u> A student, if he/she applies, may be allowed to withdraw temporarily from the program, subject to approval of Academic Council of MIST, he will be allowed to apply fresh in future batch. If approved from the date of his/her registration.

CHAPTER 2

RULES AND REGULATIONS FOR UNDERGRADUATE PROGRAMME AT MIST

2.1 Introduction

MIST has introduced course system for undergraduate studies from the academic session 2017-18. Therefore, the rules and regulations mentioned in this paper will be applicable to students for administering undergraduate curriculum through the Course System. This will be introduced with an aim of creating a continuous, even and consistent workload throughout the term for the students.

2.2 <u>The Course System</u>

The salient features of the Course System are as follows:

- a. Number of theory courses will be generally 5 in each term. However, with the recommendation of course coordinator and Head of the Department, Commandant MIST may allow relaxation in this regard. This relaxation is to be reported to Academic Council of MIST.
- b. Students will not face any level repeat for failing.
- c. Students will get scope to improve their grading.
- d. Introduction of more optional courses to enable the students to select courses according to their individual needs and preferences.
- e. Continuous evaluation of students' performance.
- f. Promotion of student-teacher interaction and contact.
- **2.2.1** Beside the professional courses pertaining to each discipline, the undergraduate curriculum gives a strong emphasis on acquiring thorough knowledge in the basic sciences of mathematics, physics and chemistry. Due importance is also given on the study of several subjects in humanities and social sciences.
- **2.2.2** The first two years of bachelor's degree programs generally consist of courses on basic engineering, general science and humanities subjects; while the third and subsequent years focus on specific disciplines.

2.3 Number of Terms in a Year

There will be two terms (Spring Term I and Fall Term II) in an academic year.

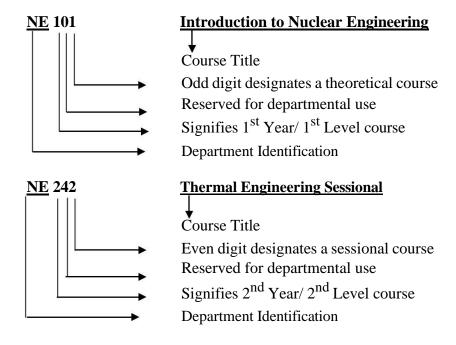
2.4 **Duration of Terms**

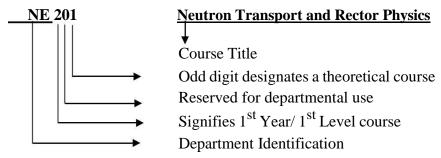
The duration of each of Term I (Spring) and Term II (Fall) (maximum 22 weeks) may be as under:

Ser	Events	Durations
1.	Classes before Mid Term	7 weeks

2.	Mid Term Vacation	1 week
3.	Classes after Mid Term	7 weeks
4.	Makeup Classes and Preparatory leave	2/3 weeks
5.	Term Final Examination	2/3 weeks
6.	Term End Vacation	1/2 week

2.5 <u>Course Pattern and Credit Structure</u>


The undergraduate program is covered by a set of theoretical courses along with a set of laboratories (sessional) courses to support them.


2.6 Course Designation System

Each course is designated by a maximum of four letter code identifying the department offering the course followed by a three-digit number having the following interpretation:

- a. The left most digit corresponds to the year/level in which the course is normally taken by the students. The second digit is reserved for departmental use. It usually identifies a specific area/group of study within the department.
- b. The right most digit is an odd number for theoretical courses and an even number for sessional courses.

The course designation system is illustrated as Follows:

2.7 Assignment of Credits

The assignment of credits to a theoretical course follows a different rule from that of a sessional course.

- a. Theoretical Courses: One lecture per week per term is equivalent to one credit.
- b. Sessional Courses: Credits for sessional courses is half of the class hours per week per term.

Credits are also assigned to project and thesis work taken by the students. The amount of credits assigned to such work varies from one discipline to another.

2.8 Types of Courses

The types of courses included in the undergraduate curricula are divided into the following groups:

- a. <u>Core Courses</u>. In each discipline, a number of courses are identified as core courses, which form the nucleus of the respective bachelor's degree program. A student has to complete the entire designated core courses of his/her discipline.
- b. **Prerequisite Courses.** Some of the core courses are identified as prerequisite courses for a specific subject.
- c. <u>Optional Courses</u>. Apart from the core courses, the students can choose from a set of optional courses. A required number of optional courses from a specified group have to be chosen.

2.9 <u>Course Offering and Instruction</u>

The courses to be offered in a particular term are announced and published in the Course Catalog along with the tentative Term Schedule before the end of the previous term. The courses to be offered in any term will be decided by Board of Undergraduate Studies (BUGS) of the respective department.

2.9.1 Each course is conducted by a course teacher who is responsible for maintaining the expected standard of the course and for the assessment of students' performance. Depending on the strength of registered students (i.e. on the number of students) enrolled for the course, the teacher concerned might have course associates and Teaching Assistants (TA) to aid in teaching and assessment.

2.10 Teacher Student Interaction

The new course system encourages students to come in close contact with the teachers. For promotion of a high level of teacher-student interaction, each student is assigned to an adviser and the student is free to discuss all academic matters with his/her adviser. Students are also encouraged to meet any time with other teachers for help and guidance in academic matters. However, students are not allowed to interact with teachers after the moderation of questions.

2.11 Students' Adviser

One adviser is normally appointed for a group of students by the BUGS of the concerned department. The adviser advises each student about the courses to be taken in each term by discussing the academic program of that particular term with the student.

- **2.11.1** However, it is also the student's responsibility to keep regular contact with his/her adviser who will review and eventually approve the student's specific plan of study and monitor subsequent progress of the student.
- **2.11.2** For a student of second and subsequent terms, the number and nature of courses for which he/she can register is decided on the basis of academic performance during the previous term. The adviser may permit the student to drop one or more courses based on previous academic performance.

2.12 <u>Course Registration</u>

Any student who uses classroom, laboratory facilities or faculty-time is required to register formally. Upon admission to the MIST, students are assigned to advisers. These advisers guide the students in choosing and registering courses.

2.13 Registration Procedure

At the commencement of each term, each student has to register for courses in consultation with and under the guidance of his/her adviser. The date, time and venue of registration are announced in advance by the Registrar's Office. Counseling and advising are accomplished at this time. It is absolutely essential that all the students be present for registration at the specified time.

2.14 Pre-conditions for Registration

- a. For first year students, department-wise enrollment/admission is mandatory prior to registration. At the beginning of the first term, an orientation program will be conducted for them where they are handed over with the registration package on submission of the enrollment slip.
- b. Any student, other than the new batch, with outstanding dues to the MIST or a hall of residence is not permitted to register. Each student must clear their dues and obtain a clearance certificate, upon production of which, he/she will be given necessary Course Registration Forms to perform course registration.

c. A student is allowed to register in a particular course subject to the class capacity constraints and satisfaction of pre-requisite courses. However, even if a student fails in a pre-requisite course in any term, the concerned department (BUGS) may allow him/her to register for a course which depends upon the pre-requisite course provided that his/her attendance and performance in the continuous assessment of the mentioned pre-requisite course is found to be satisfactory.

2.15 Registration Deadline

Each student must register for the courses to be taken before the commencement of each term. Late registration is permitted only during the first week of classes. Late registration after this date will not be accepted unless the student submits a written application to the registrar through the concerned Head of the department explaining the reasons for delay. Acceptable reasons may be medical problems with supporting documents from the Medical Officer of MIST or some other academic commitments that prohibit enrollment prior to the last date of registration.

2.16 Penalty for Late Registration

Students who fail to register during the designated dates for registration are charged a late registration fee of Tk. 100.00 (One hundred only) per credit hours. Penalty for late registration will not be waived.

2.17 <u>Limits on the Credit Hours to be Taken</u>

- **2.17.1** A student should be enrolled for at least 15 credit hours and is allowed to take a maximum of 24 credit hours. Relaxation on minimum credit hours may be allowed. A student must enroll for the sessional courses prescribed in a particular term within the allowable credit hour limits.
- **2.17.2** In special cases where it is not possible to allot the minimum required 15 credit hours to a student, the concerned department (BUGS) may permit with the approval of the Comdt, a lesser number of credit hours to suit individual requirements. Only graduating students may be allowed to register less than 15 Cr Hr without approval of Commandant. A list of all such cases to be forwarded to Register Office, ICT dte andController of Exam Office by the respective Department.

2.18 Course Add/Drop

- **2.18.1** A student has some limited options to add or drop courses from the registration list. Addition of courses is allowed only within the first two weeks of a regular. Dropping a course is permitted within the first four weeks of a regular term. Add or drop is not allowed after registration of courses for Supplementary-I and Supplementary-II Examination.
- **2.18.2** Any student willing to add or drop courses has to fill up a Course Adjustment Form. This also has to be done in consultation with and under the guidance of the student's respective adviser. The original copy of the Course Adjustment Form has to be submitted to the Registrar's Office, where the required numbers of photocopies are made for distribution to the concerned adviser, Head, Dean, Controller of Examinations and the student.

2.18.3 All changes must be approved by the adviser and the Head of the concerned department. The Course Adjustment Form has to be submitted after being signed by the concerned persons.

2.19 Withdrawal from a Term

If a student is unable to complete the Term Final Examination due to serious illness or serious accident, he/she may apply to the Head of the degree awarding department for total withdrawal from the term before commencement of term final examination. However, application may be considered during term final examination in special case. The application must be supported by a medical certificate from the Medical Officer of MIST. The concerned student may opt for retaining the sessional courses of the term. The Academic Council will take the final decision about such applications. However, the total duration for graduation will not exceed 6 academic years.

2.20 The Grading System

The total performance of a student in a given course is based on a scheme of continuous assessment, for theory courses this continuous assessment is made through a set of quizzes, class tests, class evaluation, class participation, homework assignment and a term final examination. The assessments for sessional courses are made by evaluating performance of the student at work during the class, viva-voce during laboratory hours and quizzes. Besides that, at the end there will be a final lab test. Each course has a certain number of credits, which describes its corresponding weightages. A student's performance is measured by the number of credits completed satisfactorily and by the weighted average of the grade points earned. A minimum grade point average (GPA) is essential for satisfactory progress. A minimum number of earned credits also have to be acquired in order to qualify for the degree. Letter grades and corresponding grade points will be given as follows:

Numerical Markings	Grade	Grade Points
80% and above	A+	4.00
75% to below 80%	A	3.75
70% to below 75%	A-	3.50
65% to below 70%	B+	3.25
60% to below 65%	В	3.00
55% to below 60%	B-	2.75
50% to below 55%	C+	2.50
45% to below 50%	С	2.25
40% to below 45%	D	2.00
below 40%	F*	0.00
	AB	Absent
	DC	Dis-collegiate
	VW	Voluntary withdrawn
	X	Project/ Thesis Continuation
	Е	Expelled
	S	Satisfactory

* Subject in which the student gets F grade shall not be regarded as earned credit hours for the calculation of Grade Point Average (GPA).

2.21 Marks Distribution

2.21.1 Theory. Forty percent (40%) marks of a theoretical course shall be allotted for continuous assessment, i.e. quizzes, home assignments, class tests, observations/ class participation and class attendance. These marks must be submitted to Office of the Controller of Examinations before commencement of final exam. The rest of the marks will be allotted to the Term Final Examination. The duration of final examination will be three (03) hours. The scheme of continuous assessment that a particular teacher would follow for a course will be announced on the first day of the classes.

Distribution of marks for a given course per credit is as follows:

Class Performance and Attendance	5%+5%= 10%
Class Test/ Assignment	20%
Mid Term Assessment (Exam / Project)	10%
Final Examination (Section A & B)	60%
Total	100%

Note:

- a. In final exam, each section can be used for achieving not more than two course outcomes (COs). The remaining COs should be attained from mid-term assessment or class tests. Course teacher has to inform the student the beginning of the terms.
- b. Course teacher of a particular course has to inform the department whether he/she wants to assess mid-term through exam or project within first two weeks of beginning of a term. The duration of mid-term examination should not be more than 50 minutes which has to be conducted in between 6th to 9th week of a semester. If mid-term assessment is done through project, then there should be project report and presentation.
- c. The weightage of class performance can be assessed through checking attentiveness during classes or arranging unnoticed pop quizzes.
- d. The number of class tests shall be n for 3.0 and above credit courses and (n-1) shall be considered for grading where n is the number of credits of the course. However, for courses having credits below 3.0, the considered class tests shall be 2 out of 3.
- e. All class test will carry 20 marks each. Exam software system will finally convert these achieved marks into total class test marks as per credit hour. i.e for n=1(20), n=2 (40), n=3 (60), n=4(80) etc.
- f. Irrespective of the result of the continuous assessment (class performance, class test, mid-term assessment), a student has to appear in the final examination (where applicable) for qualifying/passing the concern course/ subject.
- **2.21.2** <u>Sessional/Practical Examinations</u>. Sessional courses are designed and conducted by the concerned departments. Examination on sessional/practical subjects will be conducted by the respective department before the commencement of term final examination. The date of practical examination will be fixed by the respective department.

Students will be evaluated in the sessional courses on the basis of the followings (all or as decided by the Examination Sub-Committee):

	Total nercentage	100%	
e.	Viva Voce/ Presentation	10%	
d.	Final Evaluation (exam/project/assignment)	30%	
c.	Mid-Term Evaluation (exam/project/assignment)	20%	
b.	Report Writing/ Programming	15%	
a.	Conduct of Lab Tests/Class Performance	25%	

Note: the above distribution of percentage is a general guideline. Department can rearrange to some extent if required

2.21.3 Sessional Course in English / Russian. The distribution will be as under:

	Total percentage	100%
f.	Viva Voce	10
e.	Group Presentation	30
d.	Listening Skill	10
c.	Oral Performance	25
b.	Written Assignment	15
a.	Class performance/observation	10

2.21.4 Class Attendance.

Class attendance may be considered as a part of continuous assessment. No mark should be allotted for attending classes.

2.22 Calculation of GPA

Grade Point Average (GPA) is the weighted average of the grade points obtained of all the courses passed/completed by a student. For example, if a student passes/completes n courses in a term having credits of C_1, C_2, \ldots, C_n and his grade points in these courses are G_1, G_2, \ldots, G_n respectively then

$$GPA = \frac{\sum_{i=1}^{n} CiGi}{\sum_{i=1}^{n} Ci}$$

The Cumulative Grade Point Average (CGPA) is the weighted average of the GPA obtained in all the terms passed/completed by a student. For example, if a student passes/ completes n terms having total credits of TC_1, TC_2, \ldots, TC_n and his GPA in these terms are GPA₁, GPA₂, GPA_n respectively then

$$CGPA = \frac{\sum_{i=1}^{n} TCiGPAi}{\sum_{i=1}^{n} TCi}$$

Numerical Example

Suppose a student has completed eight courses in a term and obtained the following grades:

Course	Credits, C _i	Grade	Grade, Gi	Points, C _I *G _i
Shop 114	1.50	A-	3.50	5.250
NE 101	3.00	A+	4.00	12.000
CHEM 101	3.00	A	3.75	11.250
MATH 209	3.00	В	3.00	9.000
HUM 127	3.00	B-	2.75	8.250
HUM 177	3.00	В	3.00	9.000
PHY 111	3.00	A+	4.00	12.000
CSE 109	1.50	A	3.75	5.625
Total	21.00			72.375

GPA = 72.375/21.00 = 3.45

Suppose a student has completed four terms and obtained the following GPA.

Level	Term	Credit Earned, TC _I	Hours GPA Earned, GPA _i	GPA _i *TC _i
1	1	21.00	3.73	78.330
1	2	20.50	3.93	80.565
2	1	19.75	3.96	78.210
2	2	20.25	4.00	81.000
Total		81.50		318.105

CGPA = 318.105/81.50 = 3.90

2.23 Minimum Earned Credit and GPA Requirement for Obtaining Degree

Minimum credit hour requirements for the award of bachelor's degree in engineering (B.Sc. Engineering) and other discipline will be decided as per existing rules. The minimum CGPA requirement for obtaining a Bachelor's degree in engineering and other discipline is 2.20.

2.24 <u>Minimum Earned Credit and GPA Requirement for Obtaining Degree (Additional Course)</u>

Minimum credit hour requirements for the award of bachelor's degree in engineering (B.Sc. Engineering) and other discipline will be decided by the respective department (BUGS). However, at least 157 credit hours for engineering must be earned to be eligible for graduation. This must include the specified core courses. The minimum GPA requirement for obtaining a Bachelor's degree in Engineering and Architecture is 2.20. A student may take additional courses with the consent of his Advisor in order to raise GPA, but he/she may take a maximum of 15 such additional

credits beyond respective credit-hours requirements for Bachelor's degree during entire period of study.

2.25 <u>Impacts of Grade Earned</u>

The courses in which a student has earned a 'D' or a higher grade will be counted as credits earned by him/her. Any course in which a student has obtained an 'F' grade will not be counted towards his/her earned credits or GPA calculation. However, the 'F' grade will remain permanently on the Grade Sheet and the Transcript.

- **2.25.1** A student who obtains an 'F' grade in a core course will have to repeat that particular course. However, if a student gets an 'F' in an optional course, he/she may choose to repeat that course or take a substitute course if available. When a student will repeat a course in which he/she has previously obtained an 'F', he/she will not be eligible to get a grade better than 'B+' in that repeated course.
- **2.25.2** If a student obtains a grade lower than 'B+' in a particular course he/she will be allowed to repeat the course only once for the purpose of grade improvement. However, he/she will not be eligible to get a grade better than 'B+' for an improvement course.
- **2.25.3** A student will be permitted to repeat for grade improvement purposes a maximum of 6 courses in BSc. Engineering programs and a maximum of 7 courses in B. Arch. program.
- **2.25.4** If a student obtains a 'B+' or a better grade in any course he/she will not be allowed to repeat the course for the purpose of grade improvement.

2.26 Classification of Students

At MIST, regular students are classified according to the number of credit hours completed/earned towards a degree. The following classification applies to all the students:

Level	Credit Hours Earned		
	Engineering Architecture		
Level 1	0.0 to 36.0	o 36.0 0.0 to 34.0	
Level 2	More than 36.0 to 72.0	More than 34.0 to 72.0	
Level 3	More than 72.0 to 108.0	More than 72.0 to 110.0	
Level 4	More than 108.0	More than 110.0 to 147.0	
Level 5		More than 147.0	

- **2.26.1** However, before the commencement of each term all students other than new batch are classified into three categories:
- a. **Category 1:** This category consists of students who have passed all the courses described for the term. A student belonging to this category will be eligible to register for all courses prescribed for the upcoming term.

- b. Category 2: This category consists of students who have earned a minimum of 15 credits but do not belong to category 1. A student belonging to this category is advised to take at least one course less since he might have to register for one or more backlog courses as prescribed by his/her adviser.
- c. Category 3: This category consists of students who have failed to earn the minimum required 15 credits in the previous term. A student belonging to this category is advised to take at least two courses less than a category 1 student subject to the constraint of registering at least 15 credits. However, he will also be required to register for backlog courses as prescribed by the adviser.

2.27 <u>Definition of Graduating Student.</u>

Graduating students are those students who will have \leq 24 credit hour for completing the degree requirement.

2.28 Performance Evaluation

The performance of a student will be evaluated in terms of two indices, viz. Term Grade Point Average and Cumulative Grade Point Average which is the grade average for all the terms completed.

- **2.28.1** Students will be considered to be making normal progress toward a degree if their Cumulative Grade Point Average (CGPA) for all work attempted is 2.20 or higher. Students who regularly maintain a term GPA of 2.20 or better are making good progress toward the degrees and are in good standing with MIST. Students who fail to maintain this minimum rate of progress will not be in good standing. This can happen when any one of the following conditions exists:
- a. The term GPA falls below 2.20.
- b. The Cumulative Grade Point Average (CGPA) falls below 2.20.
- c. The earned number of credits falls below 15 times the number of terms attended.
- **2.28.2** All such students can make up their deficiencies in GPA and credit requirements by completing courses in the subsequent term(s) and backlog courses, if there are any, with better grades. When the minimum GPA and credit requirements are achieved the student is again returned to good standing.

2.29 Application for Graduation and Award of Degree

A student who has fulfilled all the academic requirements for Bachelor's degree will have to apply to the Controller of Examinations through his/her Adviser for graduation. Provisional Degree will be awarded by BUP on completion of credit and GPA requirements.

2.30 <u>Time Limits for Completion of Bachelor's Degree</u>

A student must complete his studies within a maximum period of six years for engineering and seven years for architecture.

2.31 Attendance, Conduct and Discipline

MIST has strict rules regarding the issues of attendance in class and discipline.

2.31.1 Attendance. All students are expected to attend classes regularly. The university believes that attendance is necessary for effective learning. The first responsibility of a student is to attend classes regularly and one is required to attend the classes as per MIST rules. Students having class attendance of 85% or above in individual subject will be treated as collegiate and less than 85% and up to 70% will be treated as non-collegiate in that subject. The non-collegiate student(s) may be allowed to appear in the examination subject to payment of non-collegiate fee/fine of an amount fixed by MIST/BUP. Students having class attendance below 70% will be treated as discollegiate and will not be allowed to appear in the examination and treated as fail.

2.31.2 Conduct and Discipline. During their stay in MIST all students are required to abide by the existing rules, regulations and code of conduct. Students are strictly forbidden to form or be members of student organization or political party, club, society etc., other than those set up by MIST authority in order to enhance student's physical, intellectual, moral and ethical development. Zero tolerance in regards of sexual abuse and harassment in any forms and drug abuse and addiction are strictly observed in the campus.

2.32 Teacher-Student Interaction

The academic system in MIST encourages students to come in close contact with the teachers. For promotion of high level of teacher-student's interaction, a course coordinator (CC) is assigned to each course. Students are free to discuss with CC about all academic matters. Students are also encouraged to meet other teachers any time for help and guidance for academic matters. Heads of the departments, Director of Administration, Director of Students Welfare (DSW), Dean and Commandant address the students at some intervals. More so, monthly Commandant's Parade is organized in MIST where all faculty members, staff and students are formed up, thereby increasing teacher-student interaction.

2.33 Absence during a Term

A student should not be absent from quizzes, tests, etc. during the term. Such absence will naturally lead to reduction in points/marks, which count towards the final grade. Absence in the Term Final Examination will result in an F grade in the corresponding course. A student who has been absent for short periods, up to a maximum of three weeks due to illness, should approach the course teacher(s) or the course coordinator(s) for make-up quizzes or assignments immediately upon return to classes. Such request has to be supported by medical certificate from competent authority (e.g. CMH/MIST Medical Officer).

2.34 Recognition of Performance

As recognition of performance and ensure continued studies MIST awards medals, scholarships and stipends will be given as per existing rules and practices.

2.35 Types of Different Examinations (Subject to change for different academic session)

Following different types of final Examinations will be conducted in MIST to evaluate the students of Undergraduate Programs:

- a. <u>Term Final Examination:</u> At the end of each normal term (after 22 wk or so), Term Final Examination will be held. Students will appear in the Term Final Examination for all the theory courses they have taken in the Term.
- b. <u>Supplementary Examination</u>: It will take place twice in a year. Supplementary-I is defined as provision of giving exam in the first week of Spring Term (Jan-Jun) / Fall Term (Jul-Dec) end break and Supplementary-II in the first week of Fall Term (Jul-Dec) / Spring Term (Jan-Jun) end break, respectively. Students will be allowed to register for a maximum of two theory courses (Failed/Improvement) in Supplementary-I and maximum of one theory course (Failed/Improvement) in Supplementary-II.
- c. <u>Improvement Examination</u>: It will be taken during Supplementary-I and Supplementary-II Examination. Questions will be same as the question of the regular examination of that Supplementary Examination (if any). Student can take maximum two subjects at a time (two subjects in supplementary-I and one subject in supplementary-II) and maximum 6 subjects in the whole academic duration. If a student obtains a grade lower than 'B+' in a course, he/she will be allowed to repeat the course only once for grade improvement. However, he/she will not be eligible to get a grade better then 'B+' for an improvement course. Among the previous result and improvement examination result, best one will be considered as final result for an individual student. However, performance of all examination i,e previous to improvement examination, shall be reflected in the transcript.

2.36 Rules of Different Examinations (Subject to change for different academic session)

2.36.1 Term Final Examination. Following rules to be followed:

- a. Registration to be completed before commencement of the class. A student has to register his desired courses paying registration, examination fee and other related fees.
- b. Late registration will be allowed without penalty within first one week of the term.
- c. Within 1st two weeks of a term a student can Add/Drop course/courses. To add a course, in the 3rd week, one has to register the course by paying additional fees. To drop a course, one has to apply within three weeks and paid fees will be adjusted/ refunded. If anyone wants to drop a course after three weeks and within 4 weeks, that will be permitted but paid fees will not be refunded in that case.
- d. Registrar office will finalize registration of all courses within 7 (seven) weeks, issue registration slip and that will be followed by issuing Admit Card.
- e. Term Final Examination to be conducted in the 18-20th week of the term as per approved Academic Calendar.

2.36.2 Supplementary Examination. Following rules to be followed:

- a. Supplementary-I is defined as provision of giving exam in the first week of Spring Term (Jan-Jun) / Fall Term (Jul-Dec) end break and Supplementary-II in the first week of Fall Term (Jul-Dec) / Spring Term (Jan-Jun) end break, respectively.
- b. Students will be allowed to register for a maximum of two theory courses (Failed/Improvement) in Supplementary-I and maximum of one theory course (Failed/Improvement) in Supplementary-II.
- c. No class will be conducted.
- d. 40% marks will be considered from the previous exams.
- e. Maximum grading in Supplementary Exam will be 'B+'.
- f. No Sessional Exam will be conducted.
- g. Examination will be taken on 60% marks like Term Final Examination.
- h. If a student fails in a course more than once in regular terms, then for calculating 40% marks best one of all continuous assessment marks will be counted.19
- j. If anyone fails in the laboratory/sessional course, that course cannot be taken in the supplementary examination.
- k. If any student fails in a course, he can clear the course retaking it 2nd time or, he can clear the examination appearing at the supplementary examination as well. Any one fails twice in a course, can only retake it in the regular term for appearing third time. But anyone fails even after appearing third time. He/she has to take approval of Academic Council of MIST for appearing 4th (last) time in a course and need to pay extra financial penalty. If any s0tudent fails even 4th time in a course, will not be allowed to appear anymore in this same course.
- 1. Registration of Supplementary-I Exam to be done within 5th wk after completion of Fall Term (July to Dec) and registration of Supplementary-II exam to be done during the Mid-Term break of Spring Term (Jan to Jun), paying all the required fees.
- m. There will be no provision for add/drop courses after registration.
- n. Question Setting, Moderation, and Result Publication to be done following the same rules of Spring (Jan to Jun) / Fall (July to Dec) Term Final Exam as per existing Examination Policy.
- p. Moderation of the questions for Supplementary-I will be done in the 5th week after completion of Fall Term (July to Dec) Final Exam and SupplementaryII with the moderation of the questions of Spring Term(Jan to Jun).
- q. Separate Tabulation sheet to be made.

r. Thesis: if a student cannot complete thesis in two consecutive terms, with the recommendation of the supervisor, he/she may continue for next one/two term within six academic years

2.36.3 Improvement Examination. Following rules to be followed:

- a. Any student gets a grading below 'B+' and desires to improve that course; he will be allowed to appear the improvement examination for that particular course.
- b. Highest grade of Improvement examination will be 'B+'.
- c. One student is allowed to appear at Improvement exam in 6 (six) courses in his whole graduation period taking maximum two courses at a time.
- d. For Improvement examination, registration is to be done before Term 2 Final Examination or, during the registration of Supplementary Courses by paying all the fees.
- e. Improvement examination to be taken during the supplementary examinations.
- f. Question Setting, Moderation and Result Publication to be done with courses of regular Term Final Examination.

2.37 <u>Irregular Graduation</u>

If any graduating student clears his/her failed course in Term-1 and his graduation requirements are fulfilled, his graduation will be effective from the result publication date of Term-1 and that student will be allowed to apply for provisional certificate.

CHAPTER 3

DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING (NSE)

3.1 Introduction to the program

The Department of Nuclear Science and Engineering (NSE) provides education for students interested in developing the peaceful applications of nuclear engineering for societal needs. Given the global climate change and fuel supply security concerns, nuclear energy is emerging as an important national energy policy element. The applications of other nuclear technologies in medicine and industry have focused attention on the value of strong Nuclear Engineering program. In response to this demand, MIST has developed a new discipline-focused program of study that prepares professionals for the many diverse applications of nuclear science and technology. Applied nuclear science is the core discipline, comprising low energy nuclear physics, biomedical, agriculture field and the interaction of ionizing radiation with matter. Most of the applications fall within three main sub-categories: nuclear power, nuclear physics and fusion technology, and the broad area of nuclear science and technology. Problems of military and national importance have consequently received great emphasis in the activities of this department.

The Department of Nuclear Science and Engineering (NSE) was raised in 2014 and the first academic session started on 5th February 2015 at Military Institute of Science and Technology (MIST). There were 40 undergraduate students in the maiden batch. The Department of Nuclear Science and Engineering (NSE) has also started MSc, MEngg and PhD programme from October 2015 session.

3.2 <u>Vision and Mission of the Program</u>

Vision: To create skilled and competent professionals in the field of Nuclear Engineering with high morals to meet the national and global needs through creative research and innovations.

Mission:

- a. To provide advance Nuclear Engineering knowledge and learning through quality education and research.
- b. To discover, demonstrate and secure innovative nuclear technology aided solutions and critical infrastructure.

3.3 Program Educational Objectives (PEOs)

No	PEO Statement			
PEO-1	Graduates of Nuclear Engineering will develop a sound knowledge on			
	mathematical, scientific and engineering fundamentals and advanced			

	knowledge of understanding in the sector of nuclear engineering including analysis techniques, design, developments and implementation methodologies.					
PEO-2	Graduates of Nuclear Engineering will acquire technical and communicative knowledge with professional and industry based education to build up successful professional careers in industry, government and academia.					
PEO-3	Graduates of Nuclear Engineering will understand sustainable engineering practice, socio-ethical values and life-long learning to adapt the innovation and changes.					
PEO-4	Graduates of Nuclear Engineering will be capable of working in the broader area of technology having the capability and responsibility of leadership and teamwork.					

3.4 Program Outcomes (POs)

Program Outcomes (POs) represent the knowledge, skills and attitudes the students should have at the end of a four-year engineering program. Based on the suggestion of Board of Accreditation for Engineering and Technical Education (BAETE), Bangladesh, the Nuclear Engineering (NE) program has following 12 Program Outcomes:

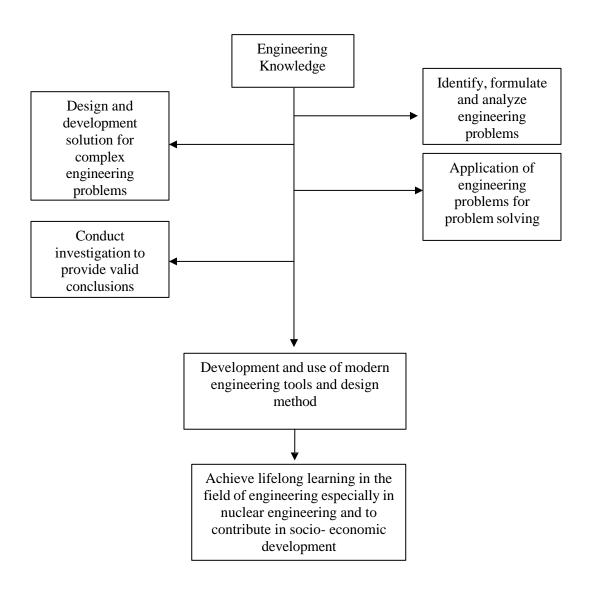
- **NO.1. Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **NO.2. Problem analysis:** Identify, formulate, research the literature and analyze complex engineering problems and reach substantiated conclusions using first principles of mathematics, the natural sciences and the engineering sciences.
- **NO.3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety as well as cultural, societal and environmental concerns.
- **NO.4. Investigation:** Conduct investigations of complex problems, considering design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
- **NO.5. Modern tool usage:** Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- **NO.6.** The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.

- **NO.7. Environment and sustainability:** Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of, for sustainable development.
- **NO.8. Ethics:** Apply ethical principles and commit to professional ethics, responsibilities and the norms of the engineering practice.
- **NO.9. Individual work and teamwork:** Function effectively as an individual and as a member or leader of diverse teams as well as in multidisciplinary settings.
- **NO.10. Communication:** Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.
- **NO.11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work as a member or a leader of a team to manage projects in multi disciplinary environments.
- **NO.12. Life-long learning:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

3.5 <u>Learning Outcomes (LOs):</u>

The Learning Outcomes (LO) are the resultant knowledge skills the student acquires at the end of a course. It defines the cognitive processes a course provides. Chapter 5 and 6 contain the detailed Learning Outcomes for each of the courses under the heading of Learning Outcomes (LOs).

3.6 Generic Skills


The graduates of the NE program are expected to have the following generic skills:

- a. Ability to apply the principles and theory of nuclear engineering knowledge to the requirements, design and development of different nuclear systems with appropriate understanding.
- b. Ability to define and use appropriate research methods and modern engineering tools.
- c. Ability to apply critical thinking to solve complex engineering problems and design innovative solutions.
- d. Ability to analyze real time problems and justify the appropriate use of technology.

e. Ability to work effectively as an individual, and as a member or leader of a team in diverse situations and exhibit social responsibility.

3.7 <u>Curriculum/ Skill Mapping</u>

The courses of NE program are designed in such a way that the corresponding Learning Outcomes (LOs) contribute to the 12 Program Outcomes (POs) which eventually achieves the mission and vision of the program. Chapter 5 and 6 contain the mapping for each of the courses. However, generic curriculum/ skill mapping is shown below:

CHAPTER 4

COURSE CURRICULUM FOR BACHELOR DEGREE IN NE

4.1 <u>Introduction</u>

Keeping the above-mentioned program outcome, the following courses are offered for the undergraduate students of Nuclear Engineering (NE) Program of the Department of Nuclear Science and Engineering (NSE).

4.2 <u>List of Core Courses</u>

Ser	Course Code	Course Name	Level- Term	Cr Hr	Ct Hr
1.	NE 101	Introduction to Nuclear Engineering	1-I	3.00	3.00
2.	NE 105	Fundamental of Atomic and Nuclear Physics	1-II	3.00	3.00
3.	NE 141	Fundamental of Thermodynamics	1-II	3.00	3.00
4.	NE 203	Introduction to Nuclear and Radio Chemistry	2-I	3.00	3.00
5.	NE 204	Introduction to Nuclear and Radio Chemistry Sessional	2-I	0.75	1.50
6.	NE 207	Reactor Theory and Analysis - I	2-II	3.00	3.00
7.	NE 243	Fundamentals of Heat Transfer and Thermal Engineering	2-I	4.00	4.00
8.	NE 244	Fundamentals of Heat Transfer and Thermal Engineering Sessional	2-I	1.50	3.00
9.	NE 251	Nuclear Materials	2-I	3.00	3.00
10.	NE 252	Nuclear Materials Sessional	2-I	1.50	3.00
11.	NE 261	Numerical Methods in Nuclear Engineering Analysis	2-II	3.00	3.00
12.	NE 262	Numerical Methods in Nuclear Engineering Sessional	2-II	1.50	3.00
13.	NE 301	Radiation Detection and Measurement	3-I	3.00	3.00
14.	NE 302	Radiation Detection and Measurement Sessional	3-I	0.75	1.50
15.	NE 307	Reactor Theory and Analysis - II	3-I	3.00	3.00
16.	NE 317	Nuclear Security and Safeguard Engineering	3-I	3.00	3.00
17.	NE 318	Nuclear Security and Safeguard Engineering Sessional	3-I	0.75	1.5
18.	NE 331	Automation and Control Engineering	3-I	3.00	3.00
19.	NE 355	Nuclear Reactor Thermal Hydraulics	3-I	3.00	3.00

20.	NE 356	Nuclear Reactor Thermal Hydraulics Sessional	3-I	0.75	1.50
21.	NE 305	Fluid Mechanics and Machinery	3-II	3.00	3.00
22.	NE 306	Fluid Mechanics and Machinery Sessional	3-II	1.50	3.00
23.	NE 320	Industrial Training	3-II	1.50	4 Wks
					<u> </u>
24.	NE 321	Reactor Operation and Safety	3-II	3.00	3.00
25.	NE 333	Reactor Instrumentation and Control	3-II	3.00	3.00
26.	NE 334	Reactor Instrumentation and Control Sessional	3-II	0.75	1.5
27.	NE 353	Mechanics of Materials	3-II	3.00	3.00
28.	NE 354	Mechanics of Materials Sessional	3-II	0.75	1.50
29.	NE 400	Final Year Design and Research Project	4-I & II	6.00	12.00
30.	NE 409	Nuclear Fuel Cycle and Radioactive Waste Management	4-I	3.00	3.00
31.	NE 410	Nuclear Fuel Cycle and Radioactive Waste Management Sessional	4-I	1.00	2.00
32.	NE 415	Radiation Interactions, Shielding and Protection	4-II	2.00	2.00
33.	NE 417	Nuclear Accidents Analysis and Radiological Emergency	4-I	3.00	3.00
34.	NE 423	In-core Fuel Management	4-II	3.00	3.00
35.	NE 424	In-core Fuel Management Sessional	4-II	1.00	2.00
36.	NE 425	Nuclear Reactor Design and Features	4-I	3.00	3.00
37.	NE 426	Nuclear Reactor Design and Features Sessional	4-I	1.5	3.00
38.	NE 427	Nuclear Power Plant Engineering	4-II	3.00	3.00
39.	NE 428	Nuclear Power Plant Engineering Sessional	4-II	0.75	1.50

4.3 <u>List of Elective Courses</u>

Ser	Course Code	Course Name	Level- Term	Cr Hr	Ct Hr
1.	NE 405	Nuclear Chemical Engineering and Corrosion	4-I or 4-II	3.0	3.0
2.	NE 407	Non-Destructive Testing and Evaluation	4-I or 4-II	3.0	3.0
3.	NE 413	Medical Applications of Nuclear Technology	4-I or 4-II	3.0	3.0
4.	NE 431	Power System Engineering and Interface of Nuclear Power Plant with Grid System	4-I or 4-II	3.0	3.0

5.	NE 433	Fundamentals of Fusion Engineering	4-I or 4-II	3.0	3.0
6.	NE 459	Computational Fluid Dynamics (CFD)	4-I or 4-II	3.0	3.0
7.	NE 479	Radioactive Waste Treatment and Disposal Techniques	4-I or 4-II	3.0	3.0
8.	NE 489	Nuclear Power Project: Construction and Decommissioning Strategies	4-I or 4-II	3.0	3.0
9.	NE 491	Fundamentals of Plasma Engineering	4-I or 4-II	3.0	3.0
10.	NE 493	Nuclear Technology for Nonpower	4-I or 4-II	3.0	3.0
		Applications			

4.4 <u>List of Interdisciplinary Courses and General Education Courses</u>

Ser	Course Code	Course Name	Level- Term	Cr Hr	Ct Hr
1.	PHY 137	Waves and Oscillations, Structure of Matter and Quantum Mechanics	1-I	3.0	3.0
2.	PHY 138	Physics Sessional	1-I	1.5	3.0
3.	MATH 209	Differential Calculus and Integral Calculus	1-I	3.0	3.0
4.	GEBS 101	Bangladesh Studies and Bengali	1-II	2.0	2.0
5.	EECE 119	Fundamentals of Electrical Circuit Analysis Engineering	1-I	3.0	3.0
6.	EECE 120	Fundamentals of Electrical Circuit Analysis Sessional	1-I	0.75	1.5
7.	LANG 172	Introduction to Russian Language - I	1-I	0.75	1.50
8.	ME 180	Basic Engineering Drawing	1-I	1.5	3.0
9.	CHEM 101	Fundamentals of Chemistry	1-II	3.0	3.0
10.	CHEM 102	Fundamentals of Chemistry Sessional	1-II	1.5	3.0
11.	MATH 209	Differential Equations & Matrix	1-II	3.0	3.0
12.	CSE 121	Introduction to Computer Science and Programming Language	1-II	3.0	3.0
13.	CSE 122	Introduction to Computer Science and Programming Language Sessional	1-II	0.75	1.5
14.	LANG 174	Introduction to Russian Language - II	1-II	0.75	1.50
15.	LANG 102	Communicative English-I	1-II	1.5	3
16.	MATH 209	Vector Analysis, Laplace Transform and Coordinate Geometry	2-I	3.0	3.0
17.	GELM 275	Leadership and Management	2-I	2.0	2.0
18.	GES 101	Fundamentals of Sociology	2-I	2.0	2.0
19.	EECE 221	Electrical and Electronics Technology	2-II	3.0	3.0
20.	EECE 222	Electrical and Electronics Technology Sessional	2-II	1.5	3.0
21.	ME 253	Engineering Mechanics	2-II	3.0	3.0
22.	ME 254	Engineering Mechanics Sessional	2-II	0.75	1.5
23.	GESL 221	Environment, sustainability and law	2-II	2.00	2.00
24.	MATH 209	Fourier Analysis, Complex Variable and Statistics	2-II	3.0	3.0
25.	GERM 352	Fundamentals of Research Methodology	3-I	2.00	4.00
26.	GEEM 351	Engineering Ethics and Moral Philosophy	3-II	2.00	2.00
27.	LANG 202	Communicative English-II	2-I	1.5	3.0
28.	GEPM 381	Project Management and Finance	3-I	2.00	2.00

4.5 Term Wise Distribution of Courses for B.Sc. Engg. in Nuclear Engineering (NE)

a. Level -1, Term -I

Ser	Course Code	Course Title	Cr Hr	Ct Hr
1.	NE 101	Introduction to Nuclear Engineering	3.0	3.0
2.	PHY 137	Waves and Oscillations, Structure of Matter and Quantum Mechanics	3.0	3.0
3.	MATH 101	Differential and Integral Calculus	3.0	3.0
4.	EECE 119	Fundamentals of Electrical Circuit Analysis	3.0	3.0
5.	GES 101	Fundamentals of Sociology	2.0	2.0
	Theory Total	l	14.0	14.0
6.	LANG 172	Introduction to Russian Language - I	0.75	1.5
7.	PHY 138	Physics Sessional	1.5	3.0
8.	EECE 120	Fundamentals of Electrical Circuit Analysis Sessional	0.75	1.5
9.	ME 180	Basic Engineering Drawing	1.5	3.0
	Sessional To	tal	4.5	9.0
	Term Total		18.5	23.0

b. Level – 1, Term – II

Ser	Course Code	Course Title	Cr Hr	Ct Hr
1.	NE 105	Fundamentals of Atomic and Nuclear Physics	3.0	3.0
2.	NE 141	Fundamentals of Thermodynamics	3.0	3.0
3.	CHEM 101	Fundamentals of Chemistry	3.0	3.0
4.	MATH 103	Differential Equations and Matrix	3.0	3.0
5.	CSE 121	Introduction to Computer Science and Programming Language	3.0	3.0
6.	GEBS 101	Bangladesh Studies and Bengali	2.0	2.0
	Theory Total		17.0	17.0
7.	LANG 174	Introduction to Russian Language - II	0.75	1.5
8.	CHEM 102	Chemistry Sessional	1.5	3
9.	LANG 102	Communicative English-I	1.5	3
10.	CSE 122	2 Introduction to Computer Science and Programming Language Sessional		1.5
	Sessional To	otal	4.5	9.0
	Term Total	Term Total		

c. Level -2, Term -I

Ser	Course Code	Course Title	Cr Hr	Ct Hr
1.	NE 203	Introduction to Nuclear and Radio Chemistry	3.0	3.0
2.	NE 243	Fundamentals of Heat Transfer and Thermal Engineering	4.0	4.0
3.	NE 251	Nuclear Materials	3.0	3.0
4.	MATH 201	Vector Analysis, Laplace Transform and Coordinate Geometry	3.0	3.0
5.	GELM 275	Leadership and Management	2.0	2.0
	Theory Total	15.0	15.0	
6.	NE 204	Introduction to Nuclear and Radio Chemistry Sessional	0.75	1.5
7.	NE 244	Fundamentals of Heat Transfer and Thermal Engineering Sessional	1.5	3.0
8.	NE 252	Nuclear Materials Sessional	1.5	3.0
9.	LANG 202	Communicative English-II	1.5	3.0
	Sessional Total			10.5
	Term Total	20.25	25.5	

d. Level -2, Term -II

Ser	Course Code	Course Title	Cr Hr	Ct Hr
1.	NE 207	Reactor Theory and Analysis-I	3.0	3.0
2.	NE 261	Numerical Methods in Nuclear Engineering Analysis	3.0	3.0
3.	EECE 221	Electrical and Electronics Technology	3.0	3.0
4.	ME 253	Engineering Mechanics	3.0	3.0
5.	MATH 209	Fourier Analysis, Complex Variable and Statistics	3.0	3.0
6.	GESL 221	Environment, Sustainability and Law	2.0	2.0
	Theory Tota	al	17.0	17.0
7.	NE 262	Numerical Methods in Nuclear Engineering Analysis Sessional	1.5	3.0
8.	EECE 222	Electrical and Electronics Technology Sessional	1.5	3.0
9.	ME 254	Engineering Mechanics Sessional	0.75	1.5
	Sessional Total			7.5
	Term Total			24.5

e. Level -3, Term -1

Ser	Course Code	Course Title	Cr Hr	Ct Hr
1.	NE 301	Radiation Detection and Measurement	3.0	3.0
2.	NE 355	Fluid Mechanics and Machinery	3.0	3.0
3.	NE 307	Reactor Theory and Analysis - II	3.0	3.0
4.	NE 317	Nuclear Security and Safeguard Engineering	3.0	3.0
5.	NE 331	Automation and Control Engineering	3.0	3.0
6.	GEPM 381	Project Management and Finance	2.0	2.0
	Theory Total		17.0	17.0
7.	NE 302	Radiation Detection and Measurement Sessional	0.75	1.5
9.	NE 318	Nuclear Security and Safeguard Engineering Sessional	0.75	1.5
10.	NE 356	Fluid Mechanics and Machinery Sessional	0.75	1.5
	Sessional Total		2.25	4.5
	Term Total		19.25	21.5

f. Level -3, Term -II

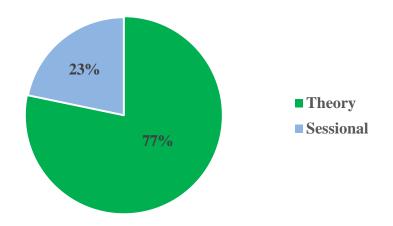
Ser	Course Code	Course Title	Cr Hr	Ct Hr
1.	NE 305	Nuclear Reactor Thermal Hydraulics	3.0	3.0
2.	NE 321	Reactor Operation and Safety	3.0	3.0
3.	NE 333	Reactor Instrumentation and Control	3.0	3.0
4.	NE 353	Mechanics of Materials	3.0	3.0
5.	GEEM 351	Engineering Ethics & Moral Philosophy	2.0	2.0
	Theory Total		14.0	14.0
6.	NE 306	Nuclear Reactor Thermal Hydraulics Sessional	1.5	3
7.	NE 320	Industrial Training	1.5	4 Wks
8.	NE 334	Reactor Instrumentation and Control Sessional	0.75	1.5
9.	NE 354	Mechanics of Materials Sessional	0.75	1.5
10.	GERM 352	Fundamentals of Research Methodology	2.0	4.0
	Sessional Total		6.5	10+ 4 Wks
	Term Total		20.5	24 + 4 Wks

g. Level -4, Term -I

Ser	Course Code	Course Title	Cr Hr	Ct Hr
1.	NE 409	Nuclear Fuel Cycle and Radioactive Waste Management	3.0	3.0
2.	NE 417	Nuclear Accidents Analysis and Radiological Emergency	3.0	3.0
3.	NE 425	Nuclear Reactor Design and Features	3.0	3.0
4.	-	Elective Course-1	3.0	3.0
5.	-	- Elective Course-2		3.0
	Theory Total		15.0	15.0
6.	NE 400	Final Year Design and Research Project	3.0	6.0
7.	NE 410 Nuclear Fuel Cycle and Radioactive Waste Management Sessional		1.0	2.0
8.	NE 426	Nuclear Reactor Design and Features Sessional	1.5	3.0
	Sessional Total		5.5	11.0
	Term Total		20.5	26.0

h. Level – 4, Term – II

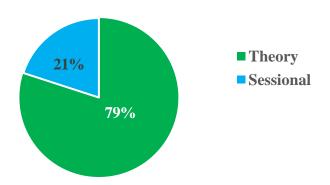
Ser	Course Code	Course Title	Cr Hr	Ct Hr
1.	NE 415	Radiation Interactions, Shielding and Protection	2.0	2.0
2.	NE 423	In-core Fuel Management	3.0	3.0
3.	NE 427	Nuclear Power Plant Engineering	3.0	3.0
4.	-	Elective Course-3	3.0	3.0
5.	-	Elective Course-4	3.0	3.0
	Theory Total		14.0	14.0
6.	NE 400	Final Year Design and Research Project	3.0	6.0
7.	NE 424	In-core Fuel Management Sessional	1.0	2.0
8.	NE 428	Nuclear Power Plant Engineering Sessional	0.75	1.50
	Sessional Total		4.75	9.5
	Term Total	18.75	23.5	


4.6 <u>Summary of Credit Distribution - Level and Termwise</u>

Level- Term	Contact Hours for Theory Courses			Total Contact Hours	
1-I	14	9	18.50	23.0	
1-II	17	9	21.50	26.0	
2-I	15	10.5	20.25	25.5	
2-II	17	7.5	20.75	24.5	
3-I	17	4.5	19.25	21.5	
3-II	14	10 + 4 wks	20.50	24 + 4 wks	
4-I	15	11	20.50	26.0	
4-II	14	9.5	18.75	23.5	
Total	123	71 + 4 wks	160	194 + 4 wks	

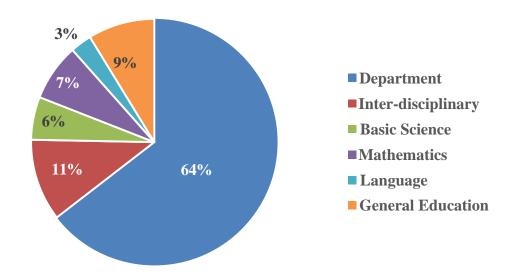
4.7 <u>Summary of Theory and Sessional Courses- Level and Termwise</u>

Level	Hours/Week		Total	Cree	dits	Total	No. of Courses	
and Term	Theory	Sessional	Ct Hours	Theory	Sessional	Credits	Theory	Sessional
Level-1 Term-I	14	9	23.0	14.0	4.5	18.50	5	4
Level-1 Term-II	17	9	26.0	17.0	4.5	21.50	6	4
Level-2 Term-I	15	10.5	25.5	15.0	5.25	20.25	5	4
Level-2 Term-II	17	7.5	24.5	17.0	3.75	20.75	6	3
Level-3 Term-I	17	4.5	21.5	17.0	2.25	19.25	6	3
Level-3 Term-II	14	10 + 4 wks	24 + 4 wks	14.0	6.5	20.50	5	5
Level-4 Term-I	15	11	26.0	15.0	5.5	20.50	5	3
Level-4 Term-II	14	9.5	23.5	14.0	4.75	18.75	5	3
Grand Total	123	71 + 4 wks	194 + 4 wks	123	37	160	43	29


Overall Theory and Sessional Credit Hours Ratio

4.8 <u>Summary of Departmental Theory and Sessional Courses - Level and Termwise</u>

Level/ Term	Theory	Sessional	Total
Level-1 Term-I	3.0	-	3.0
Level-1 Term-II	6.0	-	6.0
Level-2 Term-I	10.0	3.75	13.75
Level-2 Term-II	6.0	1.5	7.5
Level-3 Term-I	15.0	2.5	17.5
Level-3 Term-II	12.0	4.5	16.5
Level-4 Term-I	15.0	5.5	20.5
Level-4 Term-II	14.0	4.75	18.75
Total	81.0	22.25	103.25


Departmental Theory and Sessional Credit Hours Ratio

4.9 <u>Summary of Departmental, Inter-disciplinary, Basic Science and General Education</u> Courses

Level/ Term	Dept	Inter- disciplinary	Basic Science	Mathematics	Language	General Education	Total
Level-1 Term-I	3.0	5.25	4.5	3	0.75	2	18.50
Level-1 Term-II	6.0	3.75	4.5	3	2.25	2	21.5
Level-2 Term-I	13.75	-	-	3	1.5	2	20.25
Level-2 Term-II	7.5	8.25	-	3	-	2	20.75
Level-3 Term-I	17.5	-	-	-	-	2	20.00
Level-3 Term-II	16.5	-	-	-		4	19.75
Level-4 Term-I	20.5	-	-	-	-	-	20.50
Level-4 Term-II	18.75	-	-	-	-	-	18.75
Total	103.25	17.25	9	12	4.5	14	160
% of Courses	64.53%	10.78%	5.63%	7.50%	2.81%	8.75%	100%

Summary of Departmental, Inter-disciplinary, Basic Science and General Education Courses

4.10 Teaching Strategy

Multiple teaching and learning activities are necessary to achieve the intended outcomes, since students have different learning styles. It is therefore we planned to choose appropriate teaching and learning methods that will foster student's engagement in the learning process rather than them (students) listening to the lectures passively. Student centered learning is about active participation of students in the classroom, and that active participation will be achieved by content/curriculum, teacher's interaction with the students and the environment that are directed towards students learning. The strategy includes:

a. <u>Face-to-Face Learning</u>

- Lecture /Presentation/ Discussion
- Practical / Tutorial / Studio
- Case Studies
- Assignment/Quiz
- Group discussion/projects
- Design and Research

b. <u>Self-Directed Learning</u>

- Non-face-to-face learning
- Revision
- Preparation of presentation
- Preparation of Lab Reports
- Preparation of Lab Test
- Engagement in Group Projects
- Preparation of Assignment/Quiz
- Preparation for final Examination

Details of teaching strategy for each of the courses under the heading of Teaching Learning Strategy is given in Chapter 5 and 6.

4.11 Assessment Strategy

Assessment of student achievement is an important aspect of Outcome-based education. Assessment process is aligned with the learning outcomes. Assessment supports the learners in their progress and validates the achievement of the intended learning outcomes at the end of the lecture/course/module. Assessment methods are adapted depending on the kind of outcomes that are aimed to be achieved. The assessment strategy is given below:

a. Theory Based Course

Ser		Components	Grading			
1	Continuous Class Participat	Class Test/ Assignment (1-3)	20%			
		Class Participation	5%			
		Mid-term Exam	15%			
2	Fi	nal Examination	60%			
		Total Marks				

b. **Sessional Course**

Ser	C	omponents	Grading		
1		Class Participation	5%		
	Continuous	Conduct of Lab Test	20%		
	Assessment (60%)	Report Writing	15%		
		Mid term	20%		
2	Final Evaluation (400/)	Exam	30%		
	Final Evaluation (40%)	Viva Voce/ Presentation	10%		
	T	Total Marks			

Details of assessment strategy for each of the courses under the heading of assessment Strategy is given in Chapter 5 and 6.

$\underline{CHAPTER-5}$

5. <u>Course Description</u>5.1 <u>Core Courses Offered</u>

Level-1, Term-I

	COURSE INFORMATION											
Course Code Course Title	: NE 101 : Introduction to Nuclear Engineering		ture Contact I dit Hours	Hours		: 3.0 : 3.0						
	PRE-REQUISITE											
	None											
	CURRICULUM STRUCTURE											
	Outcome Based Education (OBE)											
	SYNOPSIS/ RATIONALE	RATIONALE s designed to provide a general understanding on the basics of nuclear engineering uce a variety of applications of this field. ES de an introduction on the basics of nuclear engineering and its applications. Farize students with different types of nuclear and radiation related phenomenon. For stand the basics of biological, radiological effects of radiation and its shielding is. In illustration about classifications of nuclear reactors, the basic working principle in power plants, their safety and licensing procedure.										
	This course is designed to provide a general understanding on the basics of nuclear engineering and to introduce a variety of applications of this field. OBJECTIVES 1. To provide an introduction on the basics of nuclear engineering and its applications. 2. To familiarize students with different types of nuclear and radiation related phenomenon. 3. To understand the basics of biological, radiological effects of radiation and its shielding principles.											
	OBJECTIVES											
	2. To familiarize students with different types of nuclear and radiation related phenomenon.											
	LEARNING OUTCOMES											
	 Upon completion of the course, the s Understand the basics of nucle engineering field. Explain different types of nucle reactors. Analyze the biological, radiological, radiological, radiological, radiological, evaluate the characteristics of nuclear engineering. 	ear engineering ear reactions an gical effects of nuclear power,	and the vand basic nucler	ear phe	enome nethod	non	in nuclear					
	COURSE OUTCOMES & GENERIC SKILLS											
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods					
CO1	Understand the basics of nuclear reactors and the various of applications of nuclear engineering fields.	PO1	C2			1	T, Q, F					

CO2	Explain different components of nuclear power plants and basic nuclear phenomena in nuclear reactors.	PO2	C2		1	MT, F
CO3	Analyze the nuclear fuel cycle, radioactive waste management and radiation shielding.	PO2	C4		1	ASG, F
CO4	Evaluate the necessity of nuclear licensing and safety procedures.	PO1	C5		1	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

COURSE CONTENT

Introduction, history and a short review of nuclear reactors, basic concepts of neutron reactions, nuclear material, fissile material, fissionable material, fertile material; ionizing and non-ionizing radiation; nuclear cross sections and reaction probabilities, nuclear fission and fusion, and chain reaction, criticality and multiplication factor, coolant and moderator, types of nuclear reactors, components of nuclear power reactor system, non-nuclear components of nuclear power plants, radiation shielding, basic knowledge of nuclear fuel cycle and radioactive waste management, Basic knowledge of nuclear licensing and safety.

SKILL MAPPING (CO-PO MAPPING)

No.	Course Learning Outcome			P	ROC	3RA	AM (OUT	COM	1ES	(PO)		
110.	Course Learning Outcome	1	2	3	4	5	6	M OUTCOM 6 7 8	9 10 11			12	
CO1	Understand the basics of nuclear reactors and the various of applications of nuclear engineering fields.	2											
CO2	Explain different components of nuclear power plants and basic nuclear phenomena in nuclear reactors.		2										
CO3	Analyze the nuclear fuel cycle, radioactive waste management and radiation shielding.		1										
CO4	Evaluate the necessity of nuclear licensing and safety procedures.	1											

(3 - High, 2 - Medium, 1 - low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	2	In order to apply fundamentals of nuclear engineering and a variety of applications in solving various engineering problems related to nuclear.
CO2-PO2	2	In order to undertake nuclear relevant problem identification, formulation and solution.
CO3-PO2	1	In order to undertake nuclear relevant problem identification, formulation and solution.

CO4-PO1	In order to apply fundamentals of nuclear engineering are applications in solving various engineering problems related to	•							
TEACHING	LEARNING STRATEGY								
Teaching and	Learning Activities	Engagement (hours)							
	Face-to-Face Learning								
	Lecture Practical / Tutorial / Studio	42							
	Student-Centered Learning	-							
	Self-Directed Learning								
	Non-face-to-face learning	84							
	Revision Formal Assessment	21							
	Continuous Assessment	2							
	Mid-Term	1							
	Final Examination Total	3 153							
TEACHING:	METHODOLOGY	100							
Lecture and D	iscussion, Co-operative and Collaborative Method, Problem Based Method								
COURSE SC	HEDULE								
Weeks	Topics	Remarks							
Week-1	Introduction to nuclear engineering, a short review of nuclear physics	Class Test							
Week-2	Introduction to nuclear engineering, a short review of nuclear physics Basic concepts in neutron reactions								
Week-3	Nuclear reactor safety and licensing, The fission chain reaction	Exam							
Week-4	The history of radiation effects, radiation units, exposure								
Week-5	Alpha, beta, gamma, neutron radiation	Class Test 2, Final							
Week-6	Attenuation formula, attenuation coefficient, half value layer	Exam							
Week-7	Interaction of ionizing radiation with matter, radiation effects on human health								
Week-8	The biological effects of radiation, natural and man-made radiation sources	Mid							
Week-9	Non-nuclear components of nuclear power plants, components of nuclear reactors	Term, Final							
Week-10	Radiation dose and biological dose, population dose	Exam							
Week-11	Elements of nuclear power reactor system								
Week-12	Radiation shielding	Class Test 3, Final							
Week-13	Neutron moderation and diffusion	Exam							
Week-14	Power reactors, nuclear reactor safety and licensing								

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO3, CO4	C2, C4, C5
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1	C2
, ,	Mid term	10%	CO2	C2
F	inal Examination	60%	CO1-CO4	C2, C4, C5
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Lamarsh, J.R. and Baratta, A.J., *Introduction to Nuclear Engineering*, 4th Edition, London, United Kingdom: Pearson Education, 2017.
- 2. Glasstone, S. and Sesonske, A, *Nuclear Reactor Engineering: Reactor Design Basics*, 4th Edition, USA: Springer, 2013.
- 3. J. Kenneth Shultis, Richard E. Faw, *Fundamentals of Nuclear Science and Engineering*, 3rd Edition, Boca Raton, Florida, United States: CRC Press, 2016.
- 4. Glasstone, S. and Sesonske, A, *Nuclear Reactor Engineering: Reactor System Engineering*, 4th Edition, Springer US, 2013.

REFERENCE SITE

Level-1, Term-II

	COURSE INFORMATION						
Course Code Course Title	: NE 105 : Fundamentals of Atomic and Nuclear Physics	Lecture Contact Hours Credit Hours	: 3.00 : 3.00				
	PRE-REQUISITE						
	None						
	CURRICULUM STRUCTURE						
	Outcome Based Education (OBE)						
	SYNOPSIS/RATIONALE						
	This course is designed to provide a general kr principal models of the nuclear study and radioa		ear Physics and				

OBJECTIVES

- 1. To introduce the principal models of the nuclear study and radioactivity.
- 2. To understand the characteristics of the nuclear force, electron scattering, neutrino hypothesis and deuteron properties.
- 3. To discuss the spontaneous decay of nuclei, nuclear reactions, fission and fusion processes.
- 4. To understand the nuclear force, nuclear reactions methods and reaction theory.

LEARNING OUTCOMES

Upon completion of the course, the students will be able to

- 1. Apply the principal models of the nuclear study and radioactivity.
- 2. Analyze the nuclear force, electron scattering, neutrino hypothesis and deuteron properties.
- 3. Explain the spontaneous decay of nuclei, nuclear reactions, fission and fusion process.
- 4. Evaluate the nuclear force, nuclear reactions methods and reaction theory.

COURSE OUTCOMES & GENERIC SKILLS Corresponding Bloom's Assessment CP No. CA KP Course Learning Outcome **POs** Taxonomy Methods **Understand** the basic properties PO1 CO₁ C3 1 T, Q, F of atomic physics and nuclei Analyze the nuclear force and models CO₂ PO2 C4 1 ASG, T, F **Explain** the spontaneous decay of nuclei, nuclear reactions, fission and CO₃ PO2 C2 1 MT, F fusion process. Evaluate the nuclear fusion in the star. CO₄ PO1 C5 1 1 T.F

 $(CP-Complex\ Problems,\ CA-Complex\ Activities,\ KP-Knowledge\ Profile,\ T-Test;\ PR-Project;\ Q-Quiz;\ ASG-Assignment;\ Pr-Presentation;\ R-Report;\ F-Final\ Exam,\ MT-Mid\ Term\ Exam)$

COURSE CONTENT

Introduction to Atomic Physics, Basic Properties of Atomic Nuclei, Shape of the Nucleus: Electric Moments and magnetic Moment, Nuclear spin, Nuclear Binding Energy, Energy levels, the Semi-Empirical Liquid Drop Nuclear Model, and Mass Parabolas, Stability, Deuteron problem, Nuclear Force and Nuclear Models, Radioactive decay series and radioactive equilibrium, alpha, beta and gamma emission, neutrino hypothesis, positron emission, electron capture, internal conversion, neutrino hypothesis, different types of nuclear reactions, Electromagnetic interactions, Weak interactions, Strong interactions, Symmetries and conservation laws, nuclear astrophysics, Nuclear fusion and reactions in the stars, applications of nuclear physics, Basic concepts of particle accelerators.

SKILL MAPPING (CO-PO MAPPING)

No	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understand the basic properties of atomic physics and nuclei	2											
CO2	Analyze the nuclear force and models		2										
CO3	Explain the spontaneous decay of nuclei, nuclear reactions, fission and fusion process.		2										
CO4	Evaluate the nuclear fusion in the star.	2											

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO	-PO M	APPING
-----------------------------	-------	--------

JUDINIONI ON COTO MINITAGE							
Mapping	Corresponding Level of Matching	Justification					
CO1-PO1	2	In order to apply the principal models of the nuclear study and radioactivity, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to apply.					
CO2-PO2	2	In order to analyze the nuclear force, electron scattering, neutrino hypothesis and deuteron properties, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.					
CO3-PO2	2	In order to explain the spontaneous decay of nuclei, nuclear reactions, fission and fusion process, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.					
CO4-PO1	2	In order to evaluate the nuclear force, nuclear reactions methods and reaction theory, and engineering aspects of nuclear reactor safety, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to applied.					

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement
	(hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics				
Week-1	Introduction to Atomic Physics, Basic Properties of Atomic Nuclei	Class Test			
Week-2	Week-2 Shape of the Nucleus: Electric Moments and magnetic Moment, Nuclear spin				
Week-3	Nuclear Binding Energy, Energy levels, the Semi-Empirical Liquid Drop Nuclear Model	Exam			
Week-4	Mass Parabolas, Stability, Deuteron problem				
Week-5	Nuclear Force and Nuclear Models	Class Test 2, Final			
Week-6	Radioactive decay series and radioactive equilibrium, alpha, beta and gamma emission	Exam			
Week-7	Neutrino hypothesis, positron emission, electron capture, internal conversion				
Week-8	Different types of nuclear reactions	Mid			
Week-9	Electromagnetic interactions, Weak interactions, Strong interactions	Term, Final			
Week-10	Symmetries and conservation laws	Exam			
Week-11	Nuclear astrophysics, nuclear fusion and reactions in the stars				
Week-12	applications of nuclear physics,				
Week-13	Basic concepts of particle accelerators	Class Test 3, Final Exam			
Week-14	Review class				

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO3, CO4	C2, C3, C5
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C3, C4
, ,	Mid term	10%	CO3	C2
Final Examination		60%	CO1-CO4	C2, C3, C4, C5
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. R. R. Roy and B. P. Nigam, *Nuclear Physics: Theory and Experiment*, Wiley, 1967, Digitized 21 Nov 2007.
- 2. Irving Kaplan, Nuclear Physics, Narosa Book Distributors, 2002.
- 3. Kenneth S. Krane, *Introductory Nuclear Physics*, Wiley India, 2008.
- 4. H.M. Sen Gupta, Nucleo Padartha Bidya, 1967.
- 5. Meyerhof E. Walter, Elements of Nuclear Physics, McGraw-Hill, 1967, Digitized 21 Nov 2007.

REFERENCE SITE		

Level-1, Term-II

	COURSE INFORMATION									
Course Code Course Title	: NE-141 : Fundamentals of Thermodynamics	Lecture Contact Hours Credit Hours	: 3.00 : 3.00							
	PRE-REQUISITE									
	None									
	CURRICULUM STRUCTURE									
	Outcome Based Education (OBE)									
	SYNOPSIS/RATIONALE									
	This course provides an introduction to the essential theoretical basis of engineering thermodynar and its application to a range of problems, relevant to practical engineering as well as to equip students with the basic tools and methodologies for carrying out thermodynamic analysi engineering systems.									
	OBJECTIVES									
	 To introduce the fundamentals of thermodyna between systems encountered in engineering. To incorporate the laws of thermodynamics at 3. To understand the thermodynamic cycles. To formulate the thermodynamic relation to v. To evaluate psychrometry and psychometric p. 	nd their corollaries. arious thermodynamic proces								
	LEARNING OUTCOMES									
	 Upon completion of the course, the students will be able to Define the fundamentals of thermodynamics in solving various engineering problem related process of energy transfer. Explain the laws of thermodynamics to the thermodynamic cycles and cyclic devices. Interpret psychrometry and psychometric processes. Analyze the thermodynamic relation to various thermodynamic processes using the equation energy balance and conservation. 									

	COURSE OUTCOMES & GENERIC SKILLS									
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods			

Mapping		ponding Matching					Ju	stific	atio	n							
JUSTIFICA			MAPPING														
	(3 – High	n, 2- Mediur	n, 1-low)														
	CO4	various	ne thermodynamic cyc thermodynamic pro equation of energy b vation.	cesses		2											
	CO3	psychomet	efrigeration, psychome ric processes.			2											
	CO2		laws of thermodynamic ineering devices.	cs to		2											
	CO1	and relation solving varietized to p	d the fundamental proposes of thermodynamic rious engineering proposess of energy transi	ics in oblems fer.	2												
	No.		se Learning Outcome		1	2	3	4	5	6	7	8	9	10	11	12	
							P	ROC	BRAI	M O	UTC	OM	IES ((PO)			
			G(CO-PO MAPP)	<u> </u>		1											
	Fundamental concepts; Energy, energy transfer and Laws of Thermodynamics; Properties of gases and vapours, properties of pure substances; Energy analysis of control mass and control volume system, non-flow and flow processes; Entropy and exergy analysis; Thermodynamics relations: Maxwell's equations, relations among thermodynamic properties. Joule-Thomson effect, Clausius-Clapeyron equation, Ideal gases and their cycles: Ideal cycles – Carnot cycle, Otto cycle, Diesel cycle; Gas power cycles – Brayton cycle; Vapour Power cycles; Refrigeration cycles; Mixture of gases and vapours, Psychrometry and psychometric processes.																
		SE CONTI															
			ems, CA-Complex A Pr – Presentation; R												ect; Ç) – Qu	iz;
CO4	various t	hermodynam ation of	dynamic cycles to ic processes using energy balance and	I	PO2			C	4		-	-	-	2		T, F	
CO3		refrigeration, tric processes	psychometry and s.	I	PO2			C	3		-	-	-	1		MT, F	i
CO2		oply the laws of thermodynamics to rious engineering devices.						C	3		-	-	-	1	A	ASG, l	7
CO1	relations various e	of thermod	mental properties and ynamics in solving problems related to fer.	I	PO1			C.	2		-	-		1	ŗ	Γ, Q, I	7

·								
CO1-PO1	2	The knowledge of mathematics, science, engineering fundamentals of thermodynamics in solving various explained to process of energy transfer.						
CO2-PO2	2	mathematics, natural sciences and engineering sciences are required.						
CO3-PO2	2	In order to interpret the psychrometry and psychometric processes, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.						
CO4-PO2	2	In order to analyze the thermodynamic relation to various thermodynamic processes using the equation of energy balance and conservation, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.						
TEACHING	G LEARNING STR	RATEGY						
Teaching and	d Learning Activitie	s	Engagement (hours)					
	Face-to-Face Learning Lecture Practical / Tutorial / Studio Student-Centered Learning							
	Self-Directed Learning Non-face-to-face learning Revision							
	Formal Assessment Continuous Assessment Mid-Term Final Examination							
	Total		153					
TEACHING	G METHODOLOG	SY .						
Lecture and	Discussion, Co-oper	rative and Collaborative Method, Problem Based Method						
COURSE S	CHEDULE							
Week-1	Fundamental cond	cepts, energy and energy transfer	Class Test					
Week-2	eek-2 First Law of Thermodynamics							
Week-3	Week-3 Properties of gases and vapours							
Week-4	Properties of pure	substances	——— Class Test					
Week-5	Energy analysis of	f control mass and control volume system	2, Final Exam					
Week-6								
Week-7	Ideal gases and the	eir cycles: Carnot cycle, Otto cycle, Diesel cycle						

Week-8	Ideal gases and their cycles: Brayton cycle; Vapour power cycles				
Week-9	Week-9 Second Law of Thermodynamics; Entropy and exergy analysis				
Week-10	Thermodynamics relations: Maxwell's equations, relations among thermodynamic properties, Joule-Thomson effect, Clausius-Clapeyron equation				
Week-11	Mixture of gases and vapours				
Week-12	Psychrometry and psychometric processes	Class Test			
Week-13	Psychrometry and psychometric processes	3, Final Exam			
Week-14	Revision				

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C2, C3, C4
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO2	C3
, ,	Mid term	10%	CO3	C3
Final Examination (60%)		60%	CO1-CO4	C2-C4
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Yunus A. Cengel, Michael A. Boles, *Thermodynamics: An Engineering Approach*, 4th Edition, McGraw-Hill, 2004.
- 2. A W Culp, Principles of Energy Conversion, 2nd Edition, McGraw-Hill, 1991.
- 3. R. S. Khurmi & J. K. Gupta, A Text Book of Thermal Engineering, 14th Edition, Chand, 1997.
- 4. R K Rajput, Basic Mechanical Engineering, Laxmi Publications Pvt Limited, 2008.
- 5. Ahmadul Ameen, Refrigeration and Air conditioning, PHI Learning Pvt. Ltd., 2006.
- 6. Michael J. Moran & Howard N. Shapiro, *Fundamentals of Engineering Thermodynamic*,7th Edition, John Wiley & Sons, 2010.
- 7. R E Sonntag, C. Borgnakke, G J. Van Wylen, Fundamentals of Thermodynamics, 7th Edition, 2014.

REFERENCE SITE

Level-1, Term-I

	COURSE INFORMATION												
Course Code Course Title	LANG 172 Introduction to Russian Language-I	Russian Language-I Lecture Contact Hours : 1 : 0											
	PRE-REQUISITE												
	None												
	CURRICULUM STRUCTURE												
	Outcome Based Education (OBE)	Outcome Based Education (OBE)											
	SYNOPSIS/RATIONALE												
	This course has mainly been designed to improve speaking and oral communication skills of the students. The course includes instructions and experience in speech preparation and speech delivery within various real-life situations, formal and informal. Emphasis will be given on various speeches, such as informative, persuasive and interactive. This course will help students progress in real life both personally and professionally. Students will be able to understand class lectures and can comfortably continue the Engineering course, and also to compete in the global job market and increase career skills.												
	OBJECTIVES												
	 To develop the four basics skills of writing. To develop students' interpersonal activities. To improve students' pronunciation both speaking and listening. To give the students exposure to different techrical forms informed using different techrical forms. To gain an understanding of the undeach how to edit and revise their or 	skills engaging in order to in order types on the contract types of reachiques of reachigung writing writing writing street in the contract of	ng them in var improve their land of texts in Russ ding. ing well-organ	rious grou level of co sian langu nized para	p intera	ensibility in order to make							
	LEARNING OUTCOME												
	Upon completion of the course, the stud	ents will be a	able to										
	 Listen, understand, and learn the techniques of note taking and answering questions. Understand reading techniques and speak Russian language quickly and smartly using the techniques learnt in the class. Communicate effectively within the shortest possible time to present their ideas and opinions. Develop competency in reading, writing and oral communication /presentation. 												
	COURSE OUTCOMES & GENERIO	SKILLS											
No.	Course Learning Outcome	Correspond ing POs	Bloom's Taxonomy	CP C.	A KP	Assessment Methods							
CO1	Listen, understand , and learn the techniques of note taking and answering questions.	PO1	C2		. 1	ASG, Q							

CO2	Understand reading techniques and speak Russian quickly and smartly using the techniques learnt in the class.		С3	-	-	1	ASG/ Pr, Q
CO3	Communicate effectively within the shortest possible time to present their ideas and opinions.	PO10	C4	-	-	1	Pr, Q
CO4	Develop competency in reading, writing and oral communication /presentation.	PO10	C3	-	-	2	ASG/Pr, Q

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Introduction to Language: Introducing basic skills of language, Russian language for Science and Technology.

Self-introduction and introducing others: How a speaker should introduce himself to any stranger/unknown person/ a crowd; name, family background, education, experience, any special quality/interest, likings/disliking, etc. asking and answering questions, expressing likings and disliking (food, fashion etc.); asking and giving directions, discussing everyday routines and habits, making requests/ offers/ invitations/ excuses/ apologies/ complaints, describing personality, discussing and making plans (for a holiday or an outing to the cinema), describing pictures/ any incident/ event, practicing storytelling, narrating personal experiences/Anecdotes, telephone conversations (role play in group or pair), situational talks/ dialogues: practicing different professional conversation (role play of doctor-patient conversation, teacher-student conversation).

Listening and understanding: Listening, note taking and answering questions; Students will listen to recorded text, note down important information and later on will answer to some questions, Listening to short conversations between two persons/more than two persons.

Reading techniques: scanning, skimming, predicting, inference; Reading Techniques: analysis, summarizing and interpretation of texts.

Introductory discussion on writing, prewriting, drafting; Topic sentence, paragraph development, paragraph structure, describing a person/scene/picture, narrating an event.

Paragraph writing, Compare-contrast and cause- effect paragraph.

SKILL MAPPING (CO-PO MAPPING)

No.	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Listen, understand , and learn the techniques of note taking and answering questions.	3											
CO2	Understand reading techniques and speak Russian quickly and smartly using the techniques learnt in the class.	3											
CO3	Communicate effectively within the shortest possible time to present their ideas and opinions.										2		
CO4	Develop competency in reading, writing and oral communication /presentation.										1		

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING										
Mapping	Corresponding Level of Matching	Justification								
CO1-PO1	3	In order to listen, understand, and learn the techniques of note taking and answering questions, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to applied.								
CO2-PO1	3	In order to listen, understand, and learn the techniques of note taking and answering questions, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.								
CO3-PO10	2	In order to communicate effectively within the shortest possible time to present their ideas and opinions, it is required to communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.								
CO4-PO10	1	In order to develop competency in reading, writing and oral communication presentation, it is required to communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.								

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	14
Practical / Tutorial / Studio	28
Student-Centered Learning	-
Self-Directed Learning	
Preparation of Lab Reports	14
Preparation of Lab Test	10
Preparation of presentation	9
Formal Assessment	
Continuous Assessment	14
Final Quiz	1
Total	90

TEACHING METHODOLOGY

Discussion, Participation, Pair Work, Group Presentation, Co-operative and Collaborative and student-centered Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Introduction to Language: Introducing basic skills of language, Russian for Science and Technology	
Week-2	Self-introduction and introducing others: How a speaker should introduce himself to any stranger / unknown person / a crowd; name, family background, education, experience, any special quality/interest, likings/disliking, etc.	Participation/ Assignment, Quiz
Week-3	Asking and answering questions, expressing likings and disliking (food, fashion etc.); asking and giving directions	

Week-4	Discussing everyday routines and habits, making requests/ offers/ invitations/ excuses/ apologies/ complaints				
Week-5	Describing personality, discussing and making plans (for a holiday or an outing to the cinema), describing pictures / any incident / event	Presentation,			
Week-6					
Week-7	Telephone conversations (role play in group or pair); situational talks / dialogues: practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation)				
Week-8	Listening and understanding: Listening, note taking and answering questions				
Week-9	Students will listen to recorded text, note down important information and later on will answer to some questions				
Week-10	Listening to short conversations between two persons/more than two persons				
Week-11	Reading techniques: scanning, skimming, predicting, inference				
Week-12	Reading techniques: analysis, summarizing and interpretation of texts	Assignments/			
Week-13	Introductory discussion on writing, prewriting, drafting; topic sentence, paragraph development, paragraph structure, describing a person/scene/picture, narrating an event	Presentation, Quiz			
Week-14	Paragraph writing, Compare-contrast and cause- effect paragraph				

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Participation/ Assignment	20%	CO1, CO2, CO4	C2, C3
Assessment	Reading Test	15%	CO1, CO2, CO4	C2, C3
(40%)	Listening Test	15%	CO1, CO2, CO4	C2, C3
()	Public Speaking	20%	CO2, CO3, CO4	C3-C5
	Group Presentation	30%	CO2-CO4	C2-C5
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Z. I. Yesina, E.R Maxinova, Lesions in Russian Phonetics, Russky Yazyk, 1990.
- 2. Gulnara Useinova, Russian in an Easy Way for Beginners, St. Petersburg: Zlatoust, 2000.

REFERENCE SITE

Level-1, Term-II

	COURSE INFORMATION											
Course Code Course Title												
	PRE-REQUISITE											
	LANG 172											
	CURRICULUM STRUCTURE											
	Outcome Based Education (OBE)											
	SYNOPSIS/RATIONALE											
	The Russian language course is designed for the students to develop their competence in communication skills for academic purposes especially in reading and writing. The approach will be communicative and interactive and will involve individual, pair and group work. Students will be exposed to different types of texts to develop efficient reading skill. Reading will also involve activities and discussions leading to effective writing. The course incorporates a wide range or reading texts to develop students' critical thinking which is one of the most essential elements required to write a good piece of academic writing. Emphasis is particularly put on the various forms of essay writing such as descriptive, narrative, cause-effect, compare-contrast, and argumentative. Upon completion of this course, students are expected to be able to communicate at various situations, participate in group activities and prepare formal speech for academic professional and social purposes. This course also incorporates classroom instructions to providing uidelines on presentations and communication skills. In addition, the course emphasizes of providing constructive feedback on students' oral performances.											
	OBJECTIVES											
	 To develop Russian language skills to com To strengthen students' presentation skills. To develop competency in academic reading 		-	ofessio	onally	7.						
	LEARNING OUTCOMES											
	Upon completion of the course, the students wa	ill be able to										
	 Understand the techniques of academic reading and become familiar with technical terms and develop competency in academic reading, preparing report written communication/presentation. Analyze any problem critically, analyze and interpret data and synthesize information to provide valid conclusions. Communicate effectively within the shortest possible time to present their reports and academic writings. Apply the techniques to find out the main points of any long article within a very limited time as well as know the techniques of any effective writing. 											
-	COURSE OUTCOMES & GENERIC SKIL	Corresponding	Bloom's			Assessment						
No.	Course Learning Outcome	POs	Taxonomy C	CP CA	KP	Methods						
CO1	Understand the techniques of academic reading and become familiar with technical terms and develop competency in academic reading,	PO1	C2	- -	1	ASG, Q						

Г	_													
	preparin presenta													
	Analyze any problem critically, analyze and													
CO2		data and synthesize information to	PO1			(C4		-	-	1	A	SG/P	r, Q
		valid conclusions. unicate effectively within the shortest						-						
CO3		time to present their reports and	PO10)		(C6		_	_	1		Pr, Q)
	academi	c writings.												
		he techniques to find out the main points												
CO4		ong article within a very limited time as know the techniques of any effective	PO10)		(C3		-	-	2	A	SG/P	r, Q
	writing.	1 ,												
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)												_	
	COUR	SE CONTENT												
	departm for both Writing and Cur editing, argumen Practici Public S Speech: Individu preparir	g Comprehension: Practice using different lental or subject related passages; Vocabular general and dept specific); Reading subject semi-formal, Formal/official letters, Official letters, Offi	lary for E ect specificial E-mateps, prine writing twriting f a good r extempody for pridselected	Engific fic ail; neighbore; c pull pre. esee	ineer text Appoles omp naly olic a	rs (seto de lyin and arise zing spear on, sefor	ome evel g for tech on-c and ker; prep	con raj nnic cont l de: Se	mmmvoc ob: ob: rast rast scrii t Sp	on I abu Wr s, ou t an bing peec	Engilary iting itlin d ca g gra h au	need g Co g Co guse ause aphs aphs	ver Le revis – eff or cha xtemp	etter ing, fect, arts; pore
	SKILL	MAPPING (CO-PO MAPPING)												
			- I)D (CD	A N #	OI.	TC	71 A	ES C	20)	
	No.	Course Learning Outcome	-	1								ES (1 10		12
		Understand the techniques of academic	reading	1	-	5 7			, 	0	/	10	11	12
		and become familiar with technical terr	ms and											
	CO1	develop competency in academic r preparing report written community	0.	3										
		presentation.												
	CCC	Analyze any problem critically, analyze		_							T			
	CO2	interpret data and synthesize informatio provide valid conclusions.	on to	3										
		Communicate effectively within the s												
	CO3	possible time to present their repor academic writings.	rts and									2		
		Apply the techniques to find out the main	points											
	CO4	of any long article within a very limited t	time as									1		
	well as know the techniques of any effective													
1	writing.													
		h, 2- Medium, 1-low)	L					<u> </u>						

JUSTIFICATION FOR CO-PO MAPPING										
Mapping	Corresponding Level of Matching Justification									
CO1-PO1	3	In order to understand the techniques of academic reading and become familiar with technical terms and develop competency in academic reading, preparing report written communication/ presentation, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to applied.								
CO2-PO1	3	In order to analyze any problem critically, analyze and interpret data and synthesize information to provide valid conclusions, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to applied.								
CO3-PO10	2	In order to communicate effectively within the shortest possible time to present their reports and academic writings, it is required to communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.								
CO4-PO10	1	In order to apply the techniques to find out the main points of any long article within a very limited time as well as know the techniques of any effective writing, it is required to communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.								
TEACHING LEARNING STRATEGY										

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement
Teaching and Learning Activities	(hours)
Face-to-Face Learning	
Lecture	14
Practical / Tutorial / Studio	28
Student-Centered Learning	-
Self-Directed Learning	
Preparation of Lab Reports	14
Preparation of Lab Test	10
Preparation of presentation	9
Preparation of Quiz	-
Engagement in Group Projects	-
Formal Assessment	
Continuous Assessment	14
Final Quiz	1
Total	90

TEACHING METHODOLOGY

Discussion, Participation, Pair Work, Group Presentation, Co-operative and Collaborative and student-centered Learning Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Reading Comprehension: Practice using different techniques	Participation,
Week-2	Academic reading: comprehension from departmental or subject related passages	Quiz

Week-3	Vocabulary for Engineers (some common Engineering terms for both general and dept specific), reading subject specific text to develop vocabulary	
Week-4	Writing semi-formal, formal/official letters, official e-mail	
Week-5	Applying for a job: Writing Cover Letter and Curriculum Vitae	Assignment
Week-6	Essay writing: writing steps, principles and techniques, outlining, revising, editing, proofreading	Assignment, Quiz
Week-7	Narrative and descriptive writing: comparison-contrast and cause – effect, argumentative and opinion expression, assignment writing	
Week-8	Analyzing and describing graphs or charts	
Week-9	Practicing analytical and argumentative writing	
Week-10	Public Speaking: Basic elements and qualities of a good public speaker	
Week-11	Set Speech and Extempore Speech: How to get ready for any speech – set or extempore	
Week-12	Individual/ group presentation: How to be ready for presentation, prepare script for good speech, preparing power point slides, etc. selected books/selected stories for presentation	Presentation, Quiz
Week-13	Listening to long lecture on some topics	
Week-14	Listening and understanding speeches/lectures of different accents	

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Participation/ Assignment	Assignment 20% CO1, CO2, CO4		C2-C4
Assessment	Reading Test	15%	CO1, CO2, CO4	C2-C4
(40%)	Listening Test	15%	CO1, CO2, CO4	C2-C4
	Public Speaking	20%	CO2, CO3, CO4	C3, C4, C6
	Group Presentation		CO2-CO4	C3, C4, C6
	Total Marks			

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Z. I. Yesina, E.R Maxinova, Lesions in Russian Phonetics, Russky Yazyk, 1990.
- 2. Gulnara Useinova, Russian in an Easy Way for Beginners, St. Petersburg: Zlatoust, 2000.

REFERENCE SITE

Level-2, Term-I

COURSE INFORMATION

Course Code Course Title	: NE 203 : Introduction to Nuclear and Radio Ch		cture Contact I edit Hours	Hours	: 3. : 3.					
	PRE-REQUISITE									
	CHEM 101									
	CURRICULUM STRUCTURE									
	Outcome Based Education (OBE)									
	SYNOPSIS/RATIONALE									
	This course is designed to introduce the basic concept of Nuclear and Radio Chemistry and understand the nature of nuclear reaction and its mechanisms.									
	OBJECTIVES									
	 To understand the concept of nuclear and radiochemistry. To know about the nature of nuclear reaction and reaction mechanisms. To understand the concepts of stability of nuclear material. To know the application of radioisotope in different sector. To know about separation of radioisotopes and introduce different separation method. 									
	LEARNING OUTCOMES									
	Upon completion of the course, the s	tudents will be a	able to							
	 Apply fundamental concepts of n nuclear and chemical reaction. Analyze stability of nuclear mate analysis using radiotracers, isoto Explain production of radionucli radioisotope in different sector. Evaluate decay law, half-life, me like solvent extraction method, id 	erial, activation pe dilution anal des, environme an life, radioact	analysis of radysis, and decantal aspects of	dioactive m y chain and radionucli	aterial alysis. de, app	, chemical olication of				
	COURSE OUTCOMES & GENER	RIC SKILLS								
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	CP CA	KP	Assessment Methods				
CO1	Understand the basic concept of nuclear and radio chemistry.	PO1	C3	1 -	3	T, Q, F				
CO2	Explain the chemical effects induced by nuclear reactions.	PO1, PO2, PO3	C4	2 -	4, 5	ASG, F				
CO3	Explain the production of radio-isotopes and activation analyses.	PO1, PO3	C2	1 -	4	MT, F				

CO4	Apply different separation methods and isotope dilution analysis.	PO1, PO2	C5	2	1	3	T, F
	(CP- Complex Problems, CA-Complex		_				

Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

History of nuclear and radio chemistry; definitions (atomic nucleus, isotopes etc.), decay law, half-life, Mean life, nature of nuclear reaction, Mass and stability of the atomic nucleus, chemical effects induced by nuclear reactions, Radioactive equilibrium, nuclear reaction mechanisms, Detection and measurement of radioactivity, Production of radio-isotopes, Environmental aspects of radionuclide, chemical analysis using radiotracers, Activation analysis, Different separation methods, solvent extraction method, ion exchange method, Separation of cesium & strontium, Isotope dilution analysis, Application of radioisotope in different sector.

SKILL MAPPING (CO-PO MAPPING)

No.	o. Course Learning Outcome PROGRAM		AM (OUT	COM	1ES	(PO)						
NO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understand the basic concept of nuclear and radio chemistry.	2											
CO2	Explain the chemical effects induced by nuclear reactions.	2	2	2									
CO3	Explain the production of radio-isotopes and activation analyses.	3		3									
CO4	Apply different separation methods and isotope dilution analysis.	2	2										

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	2	In order to apply fundamental concepts of nuclear reaction and reaction mechanisms, and compare with nuclear and chemical reaction, detection and measurement of radioactivity, the knowledge of mathematics, natural science,

		engineering fundamentals and an engineering specialization complex engineering problems is to be applied.	to the solution of							
CO2-PO1	2	In order to analyze stability of nuclear material, activation ana material, chemical analysis using radiotracers, isotope dilution chain analysis, the knowledge of mathematics, natural sc fundamentals and an engineering specialization to the sol engineering problems is to applied.	analysis, and decay ience, engineering							
CO2-PO2	2	In order to analyze stability of nuclear material, activation and material, chemical analysis using radiotracers, isotope dilution chain analysis, identification, formulation, research literatur complex engineering problems reaching substantiated conc principles of mathematics, natural sciences and engineering sciences.	analysis, and decay e and analysis of lusions using first							
CO2-PO3	2	In order to analyze stability of nuclear material, activation analysis of radioactiv material, chemical analysis using radiotracers, isotope dilution analysis, and deca chain analysis, it is required to design solutions for complex engineering problem and design systems, components or processes that meet specified needs wit appropriate consideration for public health and safety, cultural, societal, and environmental considerations.								
CO3-PO1	3	In order to explain production of radionuclides, environg radionuclide, application of radioisotope in different sector, mathematics, natural science, engineering fundamentals an specialization to the solution of complex engineering problems	the knowledge of d an engineering							
CO3-PO3	3	In order to explain production of radionuclides, environmental aspects or radionuclide, application of radioisotope in different sector, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.								
CO4-PO1	2	In order to evaluate decay law, half-life, mean life, radioa different separation method like solvent extraction method, ion etc., the knowledge of mathematics, natural science, engineering an engineering specialization to the solution of complex engine to applied.	n exchange method g fundamentals and							
CO4-PO2	2	In order to evaluate decay law, half-life, mean life, radios different separation method like solvent extraction method, ion etc. identification, formulation, research literature and and engineering problems reaching substantiated conclusions using mathematics, natural sciences and engineering sciences are required.	n exchange method alysis of complex g first principles of							
TEACHING :	LEARNING STRATI	EGY								
Teaching and	Learning Activities		Engagement (hours)							
		ng utorial / Studio ntered Learning	42 - -							
	Self-Directed Learni Non-face-to Revision		84 21							
	Formal Assessment Continuous Assessment Mid-Term Final Examination									
	Total		153							
TEACHING	METHODOLOGY									

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks		
Week-1	History of nuclear and radio chemistry; definitions (atomic nucleus, isotopes etc.), decay law, half-life	Class Test		
Week-2	Week-1 decay law, half-life Week-2 Mean life, nature of nuclear reaction Week-3 Mass and stability of the atomic nucleus, chemical effects induced by nucl reactions Week-4 Radioactive equilibrium Week-5 Nuclear reaction mechanisms Week-6 Detection and measurement of radioactivity Week-7 Production of radionuclides Week-8 Environmental aspects of radionuclide, chemical analysis using radiotracers Week-9 Activation analysis of radioactive material			
Week-3	Mass and stability of the atomic nucleus, chemical effects induced by nuclear reactions	1, Final		
Week-4	Radioactive equilibrium			
Week-5	Nuclear reaction mechanisms	Class Test		
Week-6	Detection and measurement of radioactivity	2 Final		
Week-7	decay law, half-life Yeek-2 Mean life, nature of nuclear reaction Mass and stability of the atomic nucleus, chemical effects induced by nuclear reactions Yeek-3 Radioactive equilibrium Yeek-5 Nuclear reaction mechanisms Yeek-6 Detection and measurement of radioactivity Yeek-7 Production of radionuclides Yeek-8 Environmental aspects of radionuclide, chemical analysis using radiotracers Yeek-9 Activation analysis of radioactive material Different separation methods, solvent extraction method, ion exchange method eek-10 Separation of cesium, strontium eek-12 Separation of plutonium, americium etc. eek-13 Isotope dilution analysis			
Week-8	Environmental aspects of radionuclide, chemical analysis using radiotracers			
Week-9	Activation analysis of radioactive material	Mid Term Final		
Week-10	Different separation methods, solvent extraction method, ion exchange method			
Week-11	Separation of cesium, strontium			
Week-12	Separation of plutonium, americium etc.	Class Test		
Week-13	Isotope dilution analysis	3 Final		
Week-14	Application of radioisotope in different sector			

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy			
Continuous			CO1, CO2, CO4	C3, C4, C5			
Assessment (40%) Class Participation and Class attendance		5+5= 10%	CO1	C3			
	Mid term	10%	CO3	C2			
	Final Examination	60%	CO1-CO4	C2-C5			
	Total Marks	100%					

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Navratil O. et. al. *Nuclear Chemistry* 2nd Edition, Cambridge, 1992
- 2. Gerhart Friedlander, Joseph W. Kennedy, Edward S. Macias, Julian M. Miller *Nuclear and Radiochemistry* 3rd Edition, Toronto, Wiley-Interscience Publication, 1981
- 3. Peter A C Mcpherson *Principle of Nuclear Chemistry* 1st Edition, London, World Scientific Publishing Europe Ltd., 2017

REFERENCE SITE

Level-2, Term-I

	COURSE INFORMATION									
Course Code Course Title	: NE 204 : Introduction to Nuclear and Radio Chemistry Sessional			ture Contact l dit Hours	Hours		: 1.50 : 0.75			
	PRE-REQUISITE									
	NE 203									
	CURRICULUM STRUCTURE									
	Outcome Based Education (OBE)									
	SYNOPSIS/RATIONALE									
	To learn and familiarize the basics of Nuclear and radiochemistry.									
	OBJECTIVES									
	To verify practically the theories and	l concepts le	earne	d in NE 203.						
	LEARNING OUTCOMES									
	Upon completion of the course, the students will be able to understand and analyze the basic nuclear and chemical properties of nuclear material and radio isotopes.									
	COURSE OUTCOMES & GENER	RIC SKILI	S							
No.	Course Learning Outcome	Correspond POs	ling	Bloom's Taxonomy	СР	CA	KP	Assessment Methods		
CO1	Apply fundamental concepts of detection and measurement of radioactivity.	PO1, PO4		C3	1	-	4	R, Q, T		
CO2	Analyze different separation method like solvent extraction method, ion exchange method etc. for various radioisotopes.	PO2, PO)4	C4	1	-	4	R, Q, T		
	(CP- Complex Problems, CA-Complex Quiz; ASG – Assignment; Pr – Presenta									
	COURSE CONTENT									
	 Measurement of external dose using Thermoluminesence Dosimeter (TLD). Preparation and measurements for environmental samples using Gamma spectrometry system: soil, water and food stuff. Effect of shielding materials in radiation protection. Calibration of Gamma spectrometry, alpha spectrometry, and ZnS Scintillation Counter in terms of energy and activity. Survey of background radiation using Survey meter and GPS. Separation of radioisotopes i.e. cesium, strontium, plutonium, americium etc. 									

SKILL MAPPING (CO-PO MAPPING)														
No.	Course Learning Outcome	1	2	P 3	ROC	GRA	M (UTO 7	COM	IES (PO) 10	11	12	
CO1	Apply fundamental concepts of detection and measurement of radioactivity.	2		, <u>J</u>	3	3	0	,	0		10	11	12	_
CO2	Analyze different separation method like solvent extraction method, ion exchange method etc. for various radioisotopes.		2		3									

^{(3 –} High, 2- Medium, 1-low)

JUSTIFIC	ATI	ONE	OP.	$CO_{-}PO$	MAT	DINC
JUSTIFIC	\mathbf{A}		UN.	しい-Fい	IVIAI	FINIT

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	2	In order to apply fundamental concepts of detection and measurement of radioactivity, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems are to apply.
CO1-PO4	3	In order to apply fundamental concepts of detection and measurement of radioactivity, ability to design and conduct experiments, as well as to analyze and interpretation of data.
CO2-PO2	2	In order to analyze different separation method like solvent extraction method, ion exchange method etc. for various radioisotopes, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required
CO2-PO4	3	In order to analyze different separation method like solvent extraction method, ion exchange method etc. for various radioisotopes, ability to design and conduct experiments, as well as to analyze and interpretation of data.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement
	(hours)
Teaching and Learning Activities	Engagement
reaching and Learning Activities	(hours)
Face-to-Face Learning	
Lecture	14
Practical / Tutorial / Studio	28
Student-Centered Learning	-
Self-Directed Learning	
Preparation of Lab Reports	14
Preparation of Lab Test	10
Preparation of Presentation	9
Formal Assessment	-
Continuous Assessment	14
Final Quiz	1
Total	90
TEACHING METHODOLOGY	-

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics				
Week-1	Measurement of external dose using Thermoluminesence Dosimeter (TLD)				
Week-2	Preparation and measurements for environmental samples using Gamma spectrometry system: soil, water and food stuff				
Week-3	Effect of shielding materials in radiation protection				
Week-4	Calibration of Gamma spectrometry, alpha spectrometry, and ZnS Scintillation Counter in terms of energy and activity				
Week-5	Survey of background radiation using Survey meter and GPS				
Week-6	Separation of radioisotopes i.e. cesium, strontium, plutonium, americium etc.				
Week-7	Practice Lab, Quiz Test, Project submission				

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Lab participation and Report	20%	CO 1, CO2	C3, C4
Assessment (40%)	Labtest-1, Labtest-2	40%	CO1, CO2	C3, C4
(4070)	Viva Voce	15%	CO1, CO2	C3, C4
Lab Quiz		25%	CO1, CO2	C3, C4
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

1. Attila Vértes, Sándor Nagy, Zoltán Klencsár, Rezso György Lovas, Frank Rösch – *Handbook of Nuclear Chemistry: Vol. 1* – 2nd Edition, NY, Springer Science & Business Media, 2011

REFERENCE SITE

Level-2, Term-II

	COURSE INFORMATION					
Course Code Course Title	NE 207 Reactor Theory and Analysis – I	Lecture Contact Hours Credit Hours	: 3.00 : 3.00			
	PRE-REQUISITE					
	NSE 101					

	CURRICULUM STRUCTURE								
	Outcome Based Education (OBE)								
	SYNOPSIS/RATIONALE								
	This course is designed to explore the nuclear reactor.	ne fundamental j	properties of	neutro	n tran	sport a	and thermal		
	OBJECTIVES								
	 To introduce the neutron transport and diffusion theory. To understand fundamental properties of the NTE, neutron interactions and development of one-group neutron diffusion theory. To discuss the basic definitions and concepts of chain-reacting systems. To understand the reactivity effects of reactor power and transmutation of radionuclide in nuclear reactors. 								
	LEARNING OUTCOMES								
	 Upon completion of the course, the students will be able to Apply neutron transport and diffusion theory in various reactor core configurations. Analyze the diffusion theories depending on source geometry. Explain the basic concepts and definitions of chain-reacting systems. Evaluate the reactivity effect and Doppler Effect on reactor power. 								
	COURSE OUTCOMES & GENE	RIC SKILLS							
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods		
CO1	Understand different fundamental properties of neutron transport and diffusion equations.	PO1, PO2	С3	-	-	3	T, Q, F		
CO2	Analyze the diffusion theories depending on source geometry in various reactor core configurations.	PO3	C4	-	-	4	T, ASG, F		
CO3	Explain the basic concepts and definitions of chain-reacting systems.	PO2, PO3	C2	-	-	4	MT, F		
CO4	Evaluate the reactivity and Doppler Effects on reactor power.	PO1, PO3	C5	-	-	3	T, F		
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)								
	COURSE CONTENT								

Neutron transport: Four and six-factor formula, neutron transport and diffusion theory, derivation of the Neutron Transport Equation (NTE), fundamental properties of the NTE, neutron interactions and development of one-group neutron diffusion theory with point, plane, and fission sources, The multi neutron diffusion equation. Solution of the neutron diffusion equation for passive media with an external neutron source, application to one-and two-region reactors, introduction to buckling, multiplication constants, critical size, neutron slowing down, and resonance capture, applications using two group theory, methodologies of neutron flux calculations.

The chain-reacting systems, thermal nuclear reactor, the critical size of a thermal reactor, power and breeding, fission and fusion reaction, fission characteristics, chain reaction, fast and thermal spectrum calculations, reactor dynamics, reactivity, reactivity effects on reactor power, in-hour equation, delayed neutron, doppler effect, production and transmutation of radionuclide in nuclear reactors.

	SKILI	SKILL MAPPING (CO-PO MAPPING)												
	Ma	C Ii Ot			PR	OC	iR <i>A</i>	M	OU	TC	OM	IES (I	2 O)	
	No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	(PO) 11 12	12
	CO1	Understand different fundamental properties of	3	3										
	COI	neutron transport and diffusion equations.	3	ر										
	CO2	Analyze the diffusion theories depending on source			2									
	CO2	geometry in various reactor core configurations.												
	CO3	Explain the basic concepts and definitions of		2	2									
	CO3	chain-reacting systems.												
	CO4	Evaluate the reactivity and Doppler Effects on	2		2									
	CO4	reactor power.												
		reactor power.												Ш

(3 – High, 2- Medium, 1-low)

JUSTIFICAT	JUSTIFICATION FOR CO-PO MAPPING						
Mapping	Corresponding Level of Matching	Justification					
CO1-PO1	3	In order to apply neutron transport and diffusion theory in various reactor core configurations, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems are to apply.					
CO1-PO2	3	In order to apply neutron transport and diffusion theory in various reactor core configurations, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.					
CO2-PO3	2	In order to analyze the diffusion theories depending on source geometry, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.					
CO3-PO2	2	In order to explain the basic concepts and definitions of chain reacting systems, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.					

CO3-PO3	2	In order to explain the basic concepts and definitions of chain reacting systems, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
CO4-PO1	2	In order to evaluate the reactivity effect and Doppler effect on reactor power, and engineering aspects of nuclear reactor safety, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to applied.
CO4-PO3	2	In order to evaluate the reactivity effect and Doppler effect on reactor power, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Weeks	Topics	
Week-1	Four and six-factor formula, neutron transport and diffusion theory	
Week-2	Derivation of the Neutron Transport Equation (NTE)	Class Test
Week-3	Fundamental properties of the NTE, neutron interactions and development of one-group neutron diffusion theory with point, plane, and fission sources	1 Final
Week-4	Application to one-and two-region reactors	
Week-5	Introduction to buckling, multiplication constants, critical size	Class Test
Week-6	Neutron slowing down, and resonance capture	2 Final
Week-7	Applications using two-group theory, methodologies of neutron flux calculations	
Week-8	The chain-reacting systems, thermal nuclear reactor	

Week-9	The calculation of the multiplication factor for a homogenous thermal reactor, heterogeneous thermal reactor	
Week-10	The critical size of a thermal reactor, power and breeding	Mid Term
Week-11	Fission and fusion reaction, fission characteristics, chain reaction	
Week-12	Fast and thermal spectrum calculations, reactor dynamics	Class Test
Week-13	Reactivity, reactivity effects on reactor power, in-hour equation, delay neutron	3 Final
Week-14	Doppler effect, production and transmutation of radionuclide in nuclear reactors	

	Components	Grading	CO	Blooms Taxonomy
	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C3, C4, C5
Continuous Assessment	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C3, C4
(40%)	Mid term	10%	CO3	C2
	Final Examination	60%	CO1-CO4	C2-C5
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Duderstadt, J.J. and Hamilton, L.J. *Nuclear Reactor Analysis* London, John Wiley and Sons, 1976.
- 2. G.I. Bell and S. Glasstone *Nuclear Reactor Theory* 1st Edition, 1970
- 3. D. G. Cacuci Handbook of Nuclear Engineering: Nuclear reactor analysis, Vol. 3 London, Springer, 2010

REFERENCE SITE

Level-2, Term-I

	COURSE INFORMATION		
Course Code Course Title	: NE 243 : Fundamentals of Heat Transfer and Thermal Engineering	Lecture Contact Hours Credit Hours	: 4.00 : 4.00
	PRE-REQUISITE		
	NE 141		
	CURRICULUM STRUCTURE		
	Outcome Based Education (OBE)		

SYNOPSIS/RATIONALE
This course is designed to understand the fundamentals of heat transfer and thermal engineering and provides an introduction to the essential theoretical basis of engineering thermodynamics and its application to a range of problems of relevance to practical engineering problem.
OBJECTIVES
 To provide an introduction to heat and momentum transfer encountering practical application in industry. To introduce the sources of conventional and renewable energy. To know the function of steam generators and turbines. To familiarize with the different types of refrigeration and air conditioning systems.
LEARNING OUTCOMES

Upon completion of the course, the students will be able to

- 1. Define the principles of heat and momentum transfer to basic engineering systems.
- 2. Analyze and calculate heat and momentum transfer in complex systems involving several heat transfer mechanisms.
- 3. Explain the essential parts and functions of steam generators and turbines.
- 4. Evaluate the thermodynamic relations to various air-conditioning and refrigeration processes.

	COURSE OUTCOMES & GENERIC SKILLS									
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods			
CO1	Describe the working principles of convective heat transfer mechanisms and its physical phenomenon.		C1, C2, C5	1	1	1	T, Q, F			
CO2	Differentiate the modes and methods of convective heat and mass transfer.	PO2	C4	3	2	2	ASG, F			
CO3	Compute the performance characteristics of different types of heat transfer equipment.	PO4	C3	2	1	1	MT, F			
CO4	Design different types of heat exchanging equipment based on industrial application.	PO3	C6	2	1	2	T, F			

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; Q-Project; PR-Project; PR-Proj

COURSE CONTENT

Definition and significance of heat transfer, Basic modes of heat transfer; basic equations and principles of heat transfer, Dimensionless Number; Conduction: Fourier's law of heat conduction; one dimensional steady-state conduction; thermal resistance concept; extended surfaces and fins, two-dimensional and transient conduction.

Numerical Methods in Heat and Mass Transfer: Finite difference methods; finite element methods; analytical solutions and approximate methods, computer-aided analysis and simulations. **Convection**: Convection mechanisms: forced and natural convection; boundary layer concepts, heat

transfer coefficients and correlations, external and internal flow heat transfer.

Radiation Heat Transfer: Blackbody radiation and Stefan Boltzmann law; radiation properties and behavior of surfaces; radiation exchange between surfaces; radiative heat transfer in participating media. Radiation shields and enclosures.

Heat Exchangers: Classification and types of heat exchangers; analysis and design, Mass Transfer: Diffusion and Fick's law; mass transfer coefficients; mass transfer in fluids.

Heat and Mass Transfer with Phase Change: Evaporation and condensation; boiling and condensation heat transfer; Heat and Mass Transfer in Industrial Processes.

SKILL MAPPING (CO-PO MAPPING)

NT.	Committee Outcome			F	PROC	GR/	AM (OUT	COM	IES ((PO)		
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Define the principles of heat and momentum transfer to basic engineering systems.	3											
CO2	Analyze and calculate heat and momentum transfer in complex systems involving several heat transfer mechanisms.		3										
CO3	Explain the essential parts and functions of steam generators and turbines.		3										
CO4	Evaluate the thermodynamic relations to various air-conditioning and refrigeration processes.	3	3										

(3 – High, 2- Medium, 1-low)

HISTIFICA	ATION FOR	CO-PO N	MAPPING
	4 I I () 1 () (

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	The knowledge of mathematics, science, engineering fundamentals is required to define the principles of heat and momentum transfer to basic engineering systems.
CO2-PO2	3	In order to analyze and calculate heat and momentum transfer in complex systems involving several heat transfer mechanisms, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO2-PO3	2	In order to analyze and calculate heat and momentum transfer in complex systems involving several heat transfer mechanisms, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
CO3-PO2	3	In order to explain the essential parts and functions of steam generators and turbines, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO4-PO1	3	In order to evaluate the thermodynamic relations to various air-conditioning and refrigeration processes, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to applied.
CO4-PO2	3	In order to evaluate the thermodynamic relations to various air-conditioning and refrigeration processes, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagem
	ent
	(hours)
Face-to-Face Learning	
Lecture	56
Practical / Tutorial / Studio	-

Student-Centered Learning	_
Self-Directed Learning	
Non-face-to-face learning	112
Revision	28
Formal Assessment	
Continuous Assessment	3
Mid-Term	1
Final Examination	3
Total	203

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks			
Week-1	Definition and significance of heat transfer, Basic modes of heat transfer; basic equations and principles of heat transfer, Dimensionless Number; Conduction	Class Test			
Week-2	Fourier's law of heat conduction; one dimensional steady-state conduction	1, Final			
Week-3	Thermal resistance concept; extended surfaces and fins, two-dimensional and transient conduction.				
Week-4	Finite difference methods; finite element methods;				
Week-5	Analytical solutions and approximate methods, computer-aided analysis and simulations	Class Test 2,			
Week-6	Convection mechanisms: forced and natural convection; boundary layer concepts	Final			
Week-7	Heat transfer coefficients and correlations, external and internal flow heat transfer.	1			
Week-8	Blackbody radiation and Stefan Boltzmann law; radiation properties and behavior of surfaces;	Mid Term,			
Week-9	Week-3 Thermal resistance concept; extended surfaces and fins, two-dimensional and transient conduction. Week-4 Finite difference methods; finite element methods; Week-5 Analytical solutions and approximate methods, computer-aided analysis and simulations Week-6 Convection mechanisms: forced and natural convection; boundary layer concepts Week-7 Heat transfer coefficients and correlations, external and internal flow heat transfer. Week-8 Blackbody radiation and Stefan Boltzmann law; radiation properties and behavior of surfaces; Week-9 Radiation exchange between surfaces; radiative heat transfer in participating media. Radiation shields and enclosures Week-10 Classification and types of heat exchangers; Analysis and design, Mass Transfer Week-11 Diffusion and Fick's law; mass transfer coefficients; mass transfer in fluids Week-12				
Week-10	Classification and types of heat exchangers; Analysis and design, Mass Transfer				
Week-11	Diffusion and Fick's law; mass transfer coefficients; mass transfer in fluids				
Week-12	Week-9 Radiation exchange between surfaces; radiative heat transfer in participating media. Radiation shields and enclosures Week-10 Classification and types of heat exchangers; Analysis and design, Mass Transfer Week-11 Diffusion and Fick's law; mass transfer coefficients; mass transfer in fluids Evaporation and condensation; hoiling and condensation heat transfer:				
Week-13	Heat and Mass Transfer in Industrial Processes.	3, Final			
Week-14	Review class				

ASSESSMENT STRATEGY

Components		Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO4	C1, C5
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO2	C1-C5
, ,	Mid term	d term 10% CO3		C2
Fi	nal Examination (60%)	60%	CO1-CO4	C1, C2, C4, C5
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Yunus A. Cengel, Michael A. Boles *Thermodynamics: An Engineering Approach* 7th Edition, London, McGraw-Hill Companies, 2011
- 2. Yunus A. Cengel, Afshin J. Ghajar *Heat and Mass Transfer: Fundamentals & Applications* 6th Edition, NY, McGraw-Hill Higher Education, 2019
- 3. A W Culp *Principles of Energy Conversion* 2nd Edition, United State, Mc Graw-Hill Senes, 1999.
- 4. R. S. Khurmi & J. K. Gupta *A Text Book of Thermal Engineering* 14th Edition, India, Chand (S.) & Co Ltd, 2006
- 5. R.S. Khurmi, J.K. Gupta *A Textbook of Refrigeration and Air-conditioning* 14th Edition, New Delhi, Eurasia Publishing House (P) Ltd., 2006
- 6. Ameen Ahmadul *Refrigeration And Air Conditioning* 1st Edition, New Delhi, Prentice-hall of India Pvt. ltd, 2006

REFERENCE SITE

Level-2, Term-I

	COURSE INFORMATION								
Course Code Course Title	: NE 244 : Fundamentals of Heat Transfer and Thermal Engineering Sessional	Lecture Contact Hours Credit Hours	: 3.00 : 1.50						
	PRE-REQUISITE								
	NE 243								
	CURRICULUM STRUCTURE								
	Outcome Based Education (OBE)								
	SYNOPSIS/RATIONALE								
	To learn and familiarize with the basics and operation of heat transfer and thermal engineering associate with complex problems of practical life.								
	OBJECTIVES								

To verify practically the theories and concepts learned in NE 243.
LEARNING OUTCOMES
Upon completion of the course, the students will be able to 1. Apply principles of heat and momentum transfer to basic engineering systems. 2. Analyze the systems examining trade-offs in different thermal engineering problems.
COURSE OUTCOMES & GENERIC SKILLS

	T		1		1					1					
No.	Course Learning		Corresp PC			loom's xonomy	, (CP	CA	KF	•	Assess Meth			
CO1	momentum transfe engineering systems.		PO2,	PO4		C3		2	2	3		R, Q), T		
CO2	Analyze the systems of offs in different them problems.		PO4,	PO9		C4		3	2	4		R, M'			
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)														
	COURSE CONTE	NT													
	 Determination o Study of free con Study of thermal Study of conden Determination o Study of a boiler Demonstration o Study of a Refrig Determination o 	rvection of fin/f radiation unit. sation of water. f calorific value f. of the cause of li geration and Air	lat plate/ of a gase quid carr -condition	pipe bu eous fue y over o	el by or pri nit.	Boy's (n boil	lers.		pure	sub:	ostanc	e.		
	SKILL MAPPING	(CO-PO MAP	PING)												
					P	ROGR	AM C	UT	COM	ES (P	PO)				
		Learning Outcor		1 2	3	4 5	6	7	8	9	10	11	12		
	CO1 Apply pri momentum engineering	nciples of heatransfer to systems.	at and basic	3		2									
	CO2 Analyze to trade-offs engineering		amining thermal			3				3					
ПСТЕСАТ	(3 – High, 2- Medium, 1-low) STIFICATION FOR CO-PO MAPPING														
	Corresponding	ATTING			T .										
Mapping	Level of Matching				Just	uticatio	n								

CO1-PO2	3	In order to apply principles of heat and momentum transfer to basic engineering systems, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.
CO1-PO4	2	In order to apply principles of heat and momentum transfer to basic engineering systems, it is required to conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
CO2-PO4	3	In order to analyze the systems examining trade-offs in different thermal engineering problems, it is required to conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
CO2-PO9	3	In order to analyze the systems examining trade-offs in different thermal engineering problems, it is needed to function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	28
Student-Centered Learning	-
Self-Directed Learning	
Preparation of Lab Reports	28
Preparation of Lab Test	20
Preparation of presentation	14
Preparation of Quiz	-
Engagement in Group Projects	-
Formal Assessment	
Continuous Assessment	1
Final Quiz	1
Total	120

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Weeks	Topics	Remarks
Week-1	Introduction	
Week-2	Visual demonstration of the three boiling modes (convective, nucleate and film boiling)	
Week-3	Determination of thermal contact conductance	
Week-4	Study of free convection of fin/flat plate/pipe bundle	
Week-5	Study of thermal radiation unit	
Week-6	Study of condensation of water	
Week-7	Mid-term	
Week-8	Determination of calorific value of a gaseous fuel by Boy's Calorimeter	

Week-9	Study of a boiler
Week-10	Demonstration of the cause of liquid carry over or priming in boilers
Week-11	Study of a Refrigeration and Air-conditioning Unit
Week-12	Determination of the pressure-temperature relationship (p-T diagram) of a pure substance
Week-13	Lab practice
Week-14	Final examination

	Components	Grading	СО	Blooms Taxonomy
	Class Participation+ Attendance	5+5=10%	CO1	C2
Continuous Assessment	Conduct of Lab Test	20%	CO2	C2-C4
(60%)	Report Writing	15%	CO1, CO2	C2-C4
	Mid term	15%	CO2	C2-C4
Final	Exam	30%	CO1	C4
Evaluation (40%)	Viva Voce/ Presentation	10%	CO2	C3
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. R K Rajput Basic Mechanical Engineering 4th Edition, India, Laxmi Publications, 2008
- 2. Jesse Seymour Doolittle *Mechanical Engineering Laboratory: Instrumentation and Its Application Hardcover* 4th Edition, McGraw-Hill, 1957

REFERENCE SITE

Level-2, Term-I

	COURSE INFORMATION				
Course Code Course Title	: NE 251 : Nuclear Materials	Lecture Contact Hours Credit Hours	: 3.00 : 3.00		
	PRE-REQUISITE None				
	CURRICULUM STRUCTURE				

	Outcome Based Education (OBE)						
	SYNOPSIS/RATIONALE						
	This course is designed to provide a and their properties and application relevant to crystallographic structure	s. Besides, this	course will	introdi	uce so	me ba	asic concept
	OBJECTIVES						
	 To understand the different phas To know the structure of the mer process. To understand the characteristics thermal conductivity, fission cro 	tals, crystal defects of fission mate	cts, fracture n	nechar meltir	nics an	d heat nt, elec	
	LEARNING OUTCOMES						
	Upon completion of the course, the s	tadents will be a	1010 10				
	 Apply different types of mechan Analyze material phase diagram Explain the structure of the meta Evaluate the characteristics of fi moderating materials. 	and iron-iron ca ls, crystal defect	rbide diagran s and heat tre	atmen			aterials and
	 Analyze material phase diagram Explain the structure of the meta Evaluate the characteristics of fi 	and iron-iron ca ls, crystal defect ssion materials,	rbide diagran s and heat tre	atmen			aterials and
No.	 Analyze material phase diagram Explain the structure of the meta Evaluate the characteristics of fi moderating materials. 	and iron-iron ca ls, crystal defect ssion materials,	rbide diagran s and heat tre	atmen			Assessment Methods
No. CO1	 Analyze material phase diagram Explain the structure of the meta Evaluate the characteristics of fi moderating materials. COURSE OUTCOMES & GENERAL	and iron-iron ca ls, crystal defect ssion materials, or RIC SKILLS Corresponding	rbide diagram s and heat tre cladding mate Bloom's	atmen erials,	shield	ing ma	Assessment
	 Analyze material phase diagram Explain the structure of the meta Evaluate the characteristics of fi moderating materials. COURSE OUTCOMES & GENE Course Learning Outcome Understand phase diagram, and different types of material phases. Analyze different types of mechanical test. 	and iron-iron ca ls, crystal defect ssion materials, or RIC SKILLS Corresponding POs	rbide diagrams and heat tre cladding mate Bloom's Taxonomy	erials,	shield	KP	Assessment Methods
CO1	 Analyze material phase diagram Explain the structure of the meta Evaluate the characteristics of fi moderating materials. COURSE OUTCOMES & GENE Course Learning Outcome Understand phase diagram, and different types of material phases. Analyze different types of mechanical 	and iron-iron ca ls, crystal defect ssion materials, of RIC SKILLS Corresponding POs PO1	rbide diagrams and heat tre cladding mate Bloom's Taxonomy C3	crials,	shield	KP 1	Assessment Methods T, MT, F
CO1	 Analyze material phase diagram Explain the structure of the meta Evaluate the characteristics of fi moderating materials. COURSE OUTCOMES & GENE Course Learning Outcome Understand phase diagram, and different types of material phases. Analyze different types of mechanical test. Explain the diffusion of the metals, crystal defects and heat treatment 	and iron-iron ca ls, crystal defect ssion materials, or RIC SKILLS Corresponding POs PO1 PO2	Bloom's Taxonomy C3 C4	crials, CP 2	shield	KP 1 3,4	Assessment Methods T, MT, F ASG, T, F
CO1 CO2 CO3	 Analyze material phase diagram Explain the structure of the meta Evaluate the characteristics of fi moderating materials. COURSE OUTCOMES & GENE Course Learning Outcome Understand phase diagram, and different types of material phases. Analyze different types of mechanical test. Explain the diffusion of the metals, crystal defects and heat treatment processes. Evaluate the characteristics nuclear 	and iron-iron ca ls, crystal defect ssion materials, of RIC SKILLS Corresponding POs PO1 PO2 PO2 PO1 Activities, KP-Kn	Bloom's Taxonomy C3 C4 C2 C5 owledge Profil	crials, CP 2 1 1 2 le, T - '	CA Test; I	KP 1 3,4 3 1,4 PR - Pr	Assessment Methods T, MT, F ASG, T, F T, F T,F roject; Q –

Phase diagram, different types of material phases, diffusion, non-equilibrium cooling, halogenation; different types of mechanical test, Charpy impact test, tensile test, hardness test; Structure of the metals, crystallography, crystal defects, dislocation, precipitation, segregation, cold work, fatigue, fracture mechanics, heat treatment, stress corrosion cracking; iron carbide equilibrium diagram; heat treatment of the metal, alloy steels, swelling, creep, atom and ion movement in solid, atomic bonding and material property-imperfection and atomic arrangements.

Diffusion of materials, application of metal diffusion, mechanical properties of materials, hardness test, bend test, Charpy impact test, ductile and brittle fracture, ductile to brittle transition, fatigue failure, creep, thermal stress, stress corrosion cracking, radiation damage, radiation swelling, Brinkman displacement spike model, Seeger's refined displacement spike model, radiation defects, Inverse Kikendall Effect, structural materials of NPP, structural material classification, material degradation, irradiation effects, ceramic nuclear fuel, nuclear and mechanical behavior of UO₂, fuel-cladding interaction, PCI failure, metallic nuclear fuel, alloys of uranium, thermal cycling growth, radiation growth, metallic plutonium, plutonium fuel, alloys of plutonium, thorium fuel.

SKILL MAPPING (CO-PO MAPPING)

No	No. Course Learning Outcome		PROGRAM OUTCOMES (PO)										
NO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understand phase diagram, and different types of material phases.	2											
CO2	Analyze different types of mechanical test.		3										
CO3	Explain the diffusion of the metals, crystal defects and heat treatment processes.		2										
CO4	Evaluate the characteristics nuclear reactor of materials and PCI failure.	2											

 $^{(3 - \}text{High}, 2 - \text{Medium}, 1 - \text{low})$

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification				
CO1-PO1	2	Apply heat treatment concept on metals				
CO2-PO2	3	Analyze material phase diagram and iron-iron carbide diagram				
CO3-PO2	2	Explain radiation damage, radiation defects, radiation damage models				
CO4-PO1	2	Evaluate ductile, brittle fracture, stress corrosion cracking, fuel cladding interaction, PCI failure				

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning Lecture Practical / Tutorial / Studio Student-Centered Learning	42 - -
Self-Directed Learning Non-face-to-face learning Revision	84 21

Final Examination	3
Mid-Term Final Examination Total	1 3 153
Formal Assessment Continuous Assessment Mid Term	2

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Phase diagram-different types of material phases, diffusion	
Week-2	Non-equilibrium cooling, homogenation	
Week-3	Different types of mechanical test, Charpy impact test, tensile test, hardness test	Class Test
Week-4	Dislocation, precipitation, segregation, cold work	1, Final Exam
Week-5	Heat treatment	- Class Test
Week-6	Structure of the metals, crystallography, crystal defects	2, Final
Week-7	Iron carbide equilibrium diagram, heat treatment of the metal, alloy steels	Exam
Week-8	Diffusion in solids	
Week-9	Requirements of reactor materials, fuel materials and plutonium	Mid Term,
Week-10	Uranium, plutonium and thorium and their alloys and compound core materials	Final
Week-11	Radiation damage and radiation defects	Exam
Week-12	Structural materials of NPP	Class Test
Week-13	Fatigue, stress corrosion cracking, creep	3, Final
Week-14	Radiation swelling, pellet cladding interaction	Exam

ASSESSMENT STRATEGY

	Components		CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1-CO4	C2-C5
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO2	C4
()	Mid term	10%	CO1	C3
I	Final Examination	60%	CO1-CO4	C2-C5
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Kopelman B. *Materials for Nuclear Reactors* 4th Edition, NY, McGraw Hill, 2006.
- Karl Whittle *Nuclear Materials Science* 1st Edition, Bristol, IOP Publishing Ltd, 2016.
 Sidney H Avner *Introduction to Physical Metallurgy* 14th Edition, NY, Glencoe/McGraw-Hill School Pub Co.

REFERENCE SITE

Level-2, Term-I

PRE-REQUISITE

	COURSE INFORMATION		
Course Code	: NE 252	Lecture Contact Hours	: 3.00
Course Title	: Nuclear Materials Sessional	Credit Hours	: 1.50

	NE 251							
	CURRICULUM STRUCTURE							
	Outcome Based Education (OBE)							
	SYNOPSIS/RATIONALE							
	To learn and familiarize the basics of	different Nuclea	r Materials a	nd the	ir app	licatio	n.	
	OBJECTIVES							
	To verify practically the theories and	concepts learned	d in NE 251.					
	LEARNING OUTCOMES							
	 Upon completion of the course, the str Apply experimental procedure to a Analyze phase diagram as per ten Demonstrate various types of head Capable of using special methods COURSE OUTCOMES & GENER	analyze the cryst nperature and all t treatment proce to prepare samp	tallographic /i	on.				
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods	
CO1	Apply experimental procedure to analyze the crystallographic/ micro structure of the material.	PO1	C3, C4	1	2	1,2	Q, R, T	
CO2	Analyze phase diagram as per temperature and alloy composition.	PO2, PO3	C4	3,4	1	3,4	Q, R, T	
CO3	Demonstrate various types of heat treatment process to enhance the strength of the materials.	ypes of heat						
CO4	Capable of using special methods to prepare sample specimen.	PO1	C4	1,6	1	3	Q, R, T	

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

1. Introduction to Metallographic and Metallographic Sample Specimen Preparation.
2. Study of Phase Diagram 1
3. Study of Phase Diagram 2
4. Microstudy of steel
5. Heat treatment of steels 1
6. Heat treatment of steels 2
7. Microstudy of Cast Iron
8. Study of morphology and elemental analysis using SEM
9. Study of elemental analysis using XRF
10. Micro fracture detection on the metallic surface using Ultrasonic Flaw Detector

SKILL MAPPING (CO-PO MAPPING)

Mo	Course I coming Outcome	PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Apply experimental procedure to analyze the crystallographic /micro structure of the material.	2											
CO2	Analyze phase diagram as per temperature and alloy composition.		2	2									
CO3	Demonstrate various types of heat treatment process to enhance the strength of the materials.			3	2								
CO4	Capable of using special methods to prepare sample specimen.	3											

(3 - High, 2 - Medium, 1 - low)

JUSTIFICATION FOR CO-PO MAPPING Corresponding **Mapping Justification** Level of Matching CO1-PO1 Scientific knowledge is required to analyze the microstructure of the material. Problem identification and finding its solution is essential to understand the phase CO2-PO2 2 diagram. 2 CO2-PO3 It could be done by forming a group. CO3-PO3 3 Group performance /team work is very important. CO3-PO4 Usually performed on the basis of data analyze and interpretation. CO4-PO1 Scientific knowledge is required to prepare sample specimen.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement
	(hours)

Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	28
Student-Centered Learning	-
Self-Directed Learning	
Preparation of Lab Reports	28
Preparation of Lab Test	20
Preparation of presentation	14
Preparation of Quiz	-
Engagement in Group Projects	-
Formal Assessment	
Continuous Assessment	1
Final Quiz	1
Total	120

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Weeks	Topics	Remarks
Week-1	Introduction to Metallographic and Metallographic Sample Specimen Preparation.	
Week-2	Study of Phase Diagram 1	
Week-3	Study of Phase Diagram 2	
Week-4	Microstudy of steel	
Week-5	Heat treatment of steels 1	
Week-6	Heat treatment of steels 2	
Week-7	Microstudy of Cast Iron	
Week-8	Study of morphology and elemental analysis using SEM	
Week-9	Study of elemental analysis using XRF	
Week-10	Micro fracture detection on the metallic surface using Ultrasonic Flaw Detector	
Week-11	Practice lab 1	
Week-12	Quiz test, Viva	
Week-13	Lab test 1	
Week-14	Lab test 2	

	Components	Grading	CO	Blooms Taxonomy
	Conduct of Lab Tests/Class Performance	25%	CO1-CO4	C1-C6
Continuous Assessment	Report Writing/ Programming	15%	CO1-CO4	C1-C6
Assessment	Mid-Term Evaluation (exam/project/assignment)	20%	CO1-CO4	C1-C6
Final	Viva Voce	10%	CO1-CO4	C1-C6
Assessment	Final Evaluation (Lab Quiz)	30%	CO1-CO4	C1-C6
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain) REFERENCE BOOKS

1. RE. Fand J.K.Shultis, Radiological Assessment, Prentice Hall, 1993.

REFERENCE SITE

Level-2, Term-II

	COURSE INFORMATION								
Course Code Course Title	: NE 261 : Numerical Methods in Nuclear Engir	neering Analysis	eering Analysis Lecture Contact Hours : 3.00 : 3.00 : 3.00						
	PRE-REQUISITE								
	MATH 101, Math 103 and CSE 121								
	CURRICULUM STRUCTURE								
	Outcome Based Education (OBE)								
	SYNOPSIS/RATIONALE								
	 This course will emphasize the common problems formulated in The course is designed to develor algorithms, and perhaps more in uses. 	nuclear enginee op the basic unde	ring field. erstanding of	the cor	nstruc	tion (of numerical		
	OBJECTIVES								
	 To know the roots of polynomial To able to solve differential equal To able to compare various modifferentiation, integration To able to evaluate the solving expression 	ations applying di athematical oper	ifferent nume rations and ta	erical me asks, su	uch as	s inte	_		
	LEARNING OUTCOMES								
	 Apply fundamentals of numerical related polynomials and transcer Analyze the differential equation Compare various mathematical cand integration. Evaluate solving equations by find 	related polynomials and transcendental equations. 2. Analyze the differential equations by different numerical methods. 3. Compare various mathematical operations and tasks, such as interpolation, differentiation, and integration.							
	COURSE OUTCOMES & GENERIC SKILLS								
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods		
CO1	Understand fundamentals of numerical analysis in finding roots of various engineering problem related polynomials and transcendental equations.	1	C1	1	1	2	T, Q, F		
CO2	Analyze the differential equations by different numerical methods.	2	C2	2	-	2	T, Q, F		

CO3	Evaluate various mathematical operations and tasks, such as interpolation, differentiation, and integration.	3	C3	1	-	3	MT, Q, F
CO4	Apply finite difference methods in solving differential equations and curve fitting.	3	C4	2	-	3	T, Q, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Roots of polynomials and transcendental equations: bisection method, method of false position, iteration method, Newton-Raphson method, Ramanujan's method, secant method, Muller's method; Solution of linear and non-linear algebraic equations; Solution of differential equations: by Taylor's series, Picard's method, Euler's method, Runge-Kutta method, predictor-corrector methods, cubic spline method, boundary value problems; Interpolation methods: finite differences method, Stirling's formula, Bessel's formula, Everett's formula, Lagrange's formula, Hermite's formula; Numerical differentiation and integration; Solving equations by finite differences; Curve fitting.

SKILL MAPPING (CO-PO MAPPING)

No	Course I coming Outcome			P	ROC	iR <i>A</i>	MC	OUT	COM	1ES	(PO)		
No.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Understand fundamentals of numerical analysis in finding roots of various engineering problem related polynomials and transcendental equations.	3											
CO2	Analyze the differential equations by different numerical methods.		3										
CO3	Evaluate various mathematical operations and tasks, such as interpolation, differentiation, and integration.			3									
CO4	Apply finite difference methods in solving differential equations and curve fitting.			3									

^{(3 –} High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING Corresponding **Mapping Justification Level of Matching** In order to apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex nuclear CO1-PO1 3 science and engineering problems finding roots of various engineering problem related polynomials and transcendental equations are required. In order undertake nuclear engineering related problem identification, CO2-PO2 formulation, research the literature and analyze complex engineering problems 3 analysis of differential equations by different numerical methods are required.

CO3-PO3	3	In order to design and conduct experiments, as well as to analyze and interpret data of nuclear related problems comparison of various mathematical operations and tasks, such as interpolation, differentiation, integration are required.
CO4-PO3	3	In order to design nuclear systems, components, or computational processes to meet desired needs within realistic constraints, it requires to evaluate solving equations by finite difference methods and curve fitting.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	, ,
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Weeks	Topics	Remarks
Week-1	Roots of polynomials and transcendental equations: bisection method, method of false position, iteration method	Class Test
Week-2	Roots of polynomials and transcendental equations: Newton-Raphson method, Ramanujan's method, secant method, Muller's method	1, Final Exam
Week-3	Solution of linear and non-linear algebraic equations (I)	Exam
Week-4	Solution of linear and non-linear algebraic equations (II)	
Week-5	Interpolation methods: finite differences method	Class Test 2, Final
Week-6	Interpolation methods: Stirling's formula, Bessel's formula, Everett's formula	Exam
Week-7	Interpolation Methods: Lagrange's Formula, Hermite's Formula	
Week-8	Solution of differential equations: by Taylor's series	Mid
Week-9	Solution of differential equations: Picard's method, Euler's method, Runge-Kutta method	Term, Final
Week-10	Solution of differential equations: predictor-corrector methods, cubic spline method, boundary value problems	Exam
Week-11	Numerical differentiation	

Week-12	Numerical integration	Class Test
Week-13	Solving equations by finite differences	3, Final
Week-14	Curve fitting	Exam

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C1, C2, C4
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1-CO4	C1-C4
(1070)	Mid term	10%	CO3	C3
	Final Examination	60%	CO1-CO4	C1-C4
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. V.N. Vedamurthy, N. Iyengar Numerical Methods India, Vikas Publishing House Pvt Limited, 2008
- 2. E. Balagurusamy *Numerical Methods* 25th Reprint Edition, New Delhi, Tata MacGrawHill, 2008
- 3. S. S. Sastry *Introductory Methods of Numerical Analysis* 5th Edition, India, PHI Learning Pvt. Ltd., 2012
- 4. Curtis F. Gerald, Patrick O. Wheatley *Applied Numerical Analysis* 7th Edition, Boston, Addison-Wesley Publishing Company, 2004
- 5. Steven C. Chapra, Raymond P. Carale *Numerical Methods for Engineers* 8th edition, Publisher NY, Tata McGraw-Hill Publishing Company Ltd., 2020

REFER	ENCE	SITE
-------	------	------

Level-2, Term-II

	COURSE INFORMATION		
Course Code Course Title	: NE 262 : Numerical Methods in Nuclear Engineering Sessional	Lecture Contact Hours Credit Hours	: 3.00 : 1.50
	PRE-REQUISITE		
	CSE 122 and NE 261		
	CURRICULUM STRUCTURE		

	Outcome Based Education (OBE)								
	SYNOPSIS/RATIONALE								
	To learn and familiarize the basics	To learn and familiarize the basics of Numerical Methods and its application.							
	OBJECTIVES								
	To verify practically the theories as	nd concepts learn	ed in NE 261	•					
	LEARNING OUTCOMES								
	Upon completion of the course, the	e students will be	able to						
	 Design and solve mathematica Develop the methodology for solutions 				elp of n	umeri	ical methods.		
	COURSE OUTCOMES & GEN	ERIC SKILLS							
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods		
CO1	Design and solve mathematical problems by numerical technique.	PO3, PO5	C6	1,2	2	2	MT, T, R, Q		
CO2	Develop the methodology for solving complex equations with the help of numerical methods.	PO3, PO4, PO5	C6	1,2	2	2	T, R, Q		
	(CP- Complex Problems, CA-Comple Quiz; ASG – Assignment; Pr – Presen								
	This course consists of two parts. practically the theories and concept simple systems using the principle.	ots learned in NE	261. In the se						
	Exp 01: Solve an equation of $f(x)$ =	exp(-x) by Fixed	d Point Iterati	on me	thod.				
	Exp 02: Solve an equation of $f(x)$				od.				
	Exp 03: Solve an equation of $f(x) =$		•						
	Exp 04: Develop a short code wh preference and categorize the total								
	Exp 05: Develop a code which will	l deliver the mear	value of the	studeı	nts' he	ights.			
	Exp 06: Prepare a curve by insertion of y-axis and x –axis data. Include more than one curves by 'hold on' option in same figure, show those different curves by 'subplot' option in same figure and finally show the curves on different figures.								
	Exp 07: Prepare an algorithm and o	curves for extrapo	olation and in	terpola	ation o	f diffe	erent data.		
	Exp 08: Build a code to find the re	sult of following	problem:						
	$1+2^2+3^2+\dots+N^2=?$								
	Exp 09: Build a code to find the res	sult of following	problem:						
	1-2+3+N = ?								
	Exp 10: Build a code to find the re-	sult of following	problem:						

1+3+5+7+...+N=?

Exp 11: Obtain the solutions by using Gauss Elimination method.

Exp 12: Obtain the solutions by using Gauss-Jordan method.

SKILL MAPPING (CO-PO MAPPING)

No. Commo Lagraria a Outrona		PROGRAM OUTCOMES (PO)											
NO.	No. Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Design and solve mathematical problems by numerical technique.			3		3							
CO2	Develop the methodology for solving complex equations with the help of numerical methods.			3	2	3							

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

0001111011110111101110111111111							
Mapping	Corresponding Level of Matching	Justification					
CO1-PO3	3	Some design problems need to be solved where students will be required to construct and solve mathematical problems by numerical technique.					
CO1-PO5	3	Modern simulation tools and numerical tools are required for solving large scale complex mathematical problems by numerical technique.					
CO2-PO3	3	Ability to develop the methodology for solving complex nuclear related equations is required the help of different numerical techniques.					
CO2-PO4	2	Design, analyze and interpret nuclear data is required the help of numerical methods to solve the complex engineering problems.					
CO2-PO5	3	Modern simulation tools and numerical tools are required for develop the methodology to solve complex equation by numerical technique.					

TEACHING LEARNING STRATEGY

TENCHING EDING IN TO STRETTE OF	
Teaching and Learning Activities	Engagement
	(hours)
Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	28
Student-Centered Learning	-
Self-Directed Learning	
Preparation of Lab Reports	28
Preparation of Lab Test	20
Preparation of presentation	14
Preparation of Quiz	-
Engagement in Group Projects	-
Formal Assessment	
Continuous Assessment	1
Final Quiz	1
Total	120

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SC	HEDULE	
Weeks	Topics	Remarks
Week-1	Solve an equation of $f(x) = \exp(-x)$ by Fixed Point Iteration method	
Week-2	Solve an equation of $f(x) = \exp(-x)$ by Newton Raphson method	
Week-3	Solve an equation of $f(x) = \exp(-x)$ by Ramanujan's method	
Week-4	Develop a short code which can receive number of students according to the user's preference and categorize the total numbers into four grades as the user's preference as well	
Week-5	Develop a code which will deliver the mean value of the students' heights	
Week-6	Prepare a curve by insertion of y-axis and x –axis data. Include more than one curves by 'hold on' option in same figure, show those different curves by 'subplot' option in same figure and finally show the curves on different figures	
Week-7	Prepare an algorithm and curves for extrapolation and interpolation of different data	
Week-8	Build a code to find the result of following problem: $1+2^2+3^2++N^2=?$	
Week-9	Build a code to find the result of following problem: 1-2+3+N=?	
Week-10	Build a code to find the result of following problem: 1+3+5+7++N=?	
Week-11	Obtain the solutions by using Gauss Elimination method	
Week-12	Obtain the solutions by using Gauss-Jordan method	
Week-13	Practice Lab	
Week-14	Quiz test, Lab Test 1, Viva	

Components	Grading	CO	Blooms Taxonomy
Conduct of Lab Tests/Class Performance	25%	CO1 CO2	C6
Report Writing/ Programming	15%	CO1 CO2	C6
Mid-Term Evaluation (exam/project/assignment)	20%	CO1	C6
Viva Voce	10%	CO1, CO2	C6
Final Evaluation (Lab Quiz)	30%	CO1, CO2	C6
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. John H. Mathews and Kurtis D. Fink *NUMERICAL METHODS: Using Matlab* Fourth Edition, Prentice-Hall Pub. Inc., 2004 ISBN 0-13-065248-2
- 2. E. Balagurusamy Numerical Methods 25th Reprint Edition, New Delhi, Tata MacGrawHill, 2008

REFERENCE SITE

Level-2, Term-II

	COURSE INFORMATION						
Course Code Course Title	GESL 221 Environment, Sustainability and Law Lecture Contact Hours : 2.00 : 2.00						
	PRE-REQUISITE						
	None						
	CURRICULUM STRUCTURE						
	Outcome Based Education (OBE)						
	SYNOPSIS/RATIONALE						
	This course is designed to learn and familiarize the basics of radiation energy phenomenon and its impact on environment.						
	OBJECTIVES						
	 To know the environmental impact of Nuclear Power Plants. To understand the features of radiation effect on biodiversity. To understand the regulatory aspects for the environment monitoring and public safety. To understand the IAEA guidelines for environment safety. 						
	LEARNING OUTCOMES						
	 Upon completion of the course, the students will be able to Define energy, energy conversion system and management. Explain IAEA Safety Standards and guides for environmental radiological monitoring and surveillance requirements during NPP construction, and operation and decommissioning. Analyze radioactivity monitoring equipment, analytical methods and their techniques, radiation level and public awareness systems. Evaluate environmental monitoring program of the regulatory body and the operators, National Monitoring System of the radioactivity. 						
	COURSE OUTCOMES & GENER	IC SKILLS					
No.	Course Learning Outcome	Corresponding POs	g Bloom's Taxonomy	CP CA	KP	Assessment Methods	
CO1	Define energy, energy conversion system and management.	PO1	C1		1	T, F, ASG	
CO2	Explain IAEA Safety Standards and guides for environmental radiological	PO1	C2		1	T, F, ASG	

										,					
	monitori														
		nents during NPP construction, ration and decommissioning.													
	Analyze														
CO2	equipme	ent, analytical methods and their	DO.			CA	ı					1		MTE	
CO3		nes, radiation level and public	PO6			C4	ŀ		-		-	1		MT, F	
		ss systems.													
		e environmental monitoring of the regulatory body and the													
CO4	operator		PO7			C5	5		-		-	2		T, F	
	operator														
										1					
		mplex Problems, CA-Complex A											ject;	Q – Quiz	;
	ASG – A	Assignment; Pr – Presentation; R	- Report ; F – Fi	ınaı	EX	am,	IVI I	- IVI1	a 1e	erm	EX	am)			
	COUR	SE CONTENT													
	Sources	s of energy, energy consumpt	tion patterns:	Li	fe-c	ycle	e co	ost c	calcu	ılat	ion	s, en	ergy	deman	d
		ting, energy conversion r					cier	ncy,	er	nerg	gy	mai	nagei	nent and	d
		ration, impacts of energy utiliz										_	_		_
		Safety Standards and guides													
		gical monitoring and surveillan nissioning.	ice requiremen	IIS (aur	ing	NPI	P co	nstr	ucti	lon.	, and	oper	ation and	a
		ction to radioactivity monito	ring equinme	nt	ane	alviti	ical	me	tho	10 4	and	thei	r tec	hnianes	
		ion and monitoring of radiat													
		es) of the NPPs and public aw													
		missioning periods; Environm													
		rs, National Monitoring Syste													
		ology due to contamination o													
		n; Thermal ecological studies,									vir	onme	ent sa	fety and	
		ability; Geomorphology, geolo		c st	udi	es f	or N	NPP	safe	ety.					
	SKILL	MAPPING (CO-PO MAPP)	ING)												
						DD	201	2 4 3 4	r OT	ma	101	MEG (DO)		
	No.	Course Learning Outc	ome	1	2			$\frac{\mathbf{KAN}}{5}$	_	8	ON 9	1ES (PO) 11	12	
		Define energy, energy conversion	on system and		2	3	4	3 (, ,	0	9	10	11	12	
	CO1	management.		3											
		Explain IAEA Safety Standard													
		for environmental radiologica		_											
	CO2	and surveillance requirements construction, and oper	during NPP ation and	3											
		decommissioning.	auon and												
	Analyze radioactivity monitoring equipme						\dashv	\dashv			H				
	CO3 analytical methods and their technique							2	2						
	radiation level and public awareness systems.														
		Evaluate environmental monitor													
	CO4	of the regulatory body and the o	perators.						3						
		1			ı	1				1	<u> </u>			1	
THORNE :		h, 2- Medium, 1-low)													
JUSTIFICAT	TION FC	OR CO-PO MAPPING													

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	In order to define energy, energy conversion system and management, basis knowledge of science is required.
CO2-PO1	3	In order to apply IAEA Safety Standards and guides for environmental radiological monitoring and surveillance requirements during NPP construction, and operation and decommissioning, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to applied.
CO3-PO6	2	In order to analyze energy conversion and core flow distribution, reactor heat generation, temperature distributions in fuel elements and transfer, application of reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems is required.
CO4-PO7	2	In order to explain multi-phase flow, convective boiling to reactor coolant channel process and radiative heat transfer, application of ethical principles and commit to professional ethics and responsibilities and norms of engineering practice is required.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	56
Revision	14
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	104

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Weeks	Topics	Remarks			
Week-1	Sources of energy, energy consumption patterns: Life-cycle cost calculations; Energy demand forecasting				
Week-2	Week-2 Energy conversion methods.; energy efficiency; energy management and conservation; impacts of energy utilization on environment				
Week-3	IAEA Safety Standards and guides for environmental monitoring of NPPs				
Week-4	Environmental radiological monitoring and surveillance requirements during NPP construction, and operation and decommissioning	Class Test 2, Final			

Week-5	Introduction to radioactivity monitoring equipment, analytical methods and their techniques			
Week-6	Evaluation and monitoring of radiation level in air, water and soil in the vicinity (15-30 km distances) of the NPPs			
Week-7	Public awareness systems, during reactor operation, maintenance, and decommissioning periods			
Week-8	Environmental monitoring program of the regulatory body and the operators			
Week-9	National Monitoring System of the radioactivity			
Week-10	Week-10 Environmental impact assessment methodology due to contamination of air, water and soil in case of accidents or higher level of radiation			
Week-11	Thermal ecological studies			
Week-12	Biodiversity conservation studies for environment safety and sustainability			
Week-13	Geomorphology, geology studies for environment safety and sustainability			
Week-14	Seismic studies for NPP safety			

Components		Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C1, C2, C4
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C1, C2
(1070)	Mid term	10%	CO3	C4
Final Examination		60%	CO1-CO4	C1, C2, C4, C5
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Todreas, N.E. and Kazimi, M. S. *Nuclear Systems I Thermal Hydraulic Fundamentals* 2nd Edition, Taylor & Francis, 2011.
- 2. Cengel Y.A. and Boles, M.A. *Thermodynamics: An Engineering Approach* 8th edition in S.I. units, McGrawHill Book Company, 2014.
- 3. Cengel, Y. A. and Cimbala, J. M. Fluid Mechanics Fundamentals and Applications McGraw-Hill, 2010.
- 4. Wakil, M. M. E. *Nuclear Energy Conversion* Revised Edition, Amer Nuclear Society, 1982
- 5. El-Wakil, M.M. *Nuclear Heat Transport* International Text Book, 1971.
- 6. Rust, J.H. Nuclear Power Plant Engineering Haralson, 1979.

REFERENCE SITE

Level-3, Term-I

COURSE INFORMATION

Course Code Course Title	: NE 301 : Radiation Detection and Measurement		ture Contact ledit Hours	Hours		: 3.0						
	PRE-REQUISITE	1										
	None											
	CURRICULUM STRUCTURE											
	Outcome Based Education (OBE)											
	SYNOPSIS/RATIONALE											
	This course is designed to impart knot technique and develop skill on statist					ion m	neasurement					
	OBJECTIVES											
	 To know the nuclear instrumentation and measurement. To understand the operation of different radiation measurement technique. To understand the statistical analysis of the radioactive samples. To understand the radiation survey techniques. 											
	LEARNING OUTCOMES											
	Upon completion of the course, the students will be able to											
	 Apply fundamentals of radiation detection and measurement theory in solving various engineering problem related to process of energy transfer. Analyze the methods of radiation detection. Evaluate the process of radiation detection and measurement. Formulate the methodology for the design and development of detectors for radiation detection and measurement. 											
	COURSE OUTCOMES & GENER	RIC SKILLS										
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods					
CO1	Apply fundamentals of radiation detection principle in solving various engineering problem related to radiation phenomena.	PO1	C3	1	-	3	T, F					
CO2	Analyze the methods of radiation detection.	PO2	C4	-	-	4	MT, F					
CO3	Evaluate the process of radiation detection and counting statistics.	PO3	C5	-	ı	5	T, F, ASG					
CO4	Formulate the methodology for the calibration and counting efficiency of the radiation detectors.	PO2	C6	1	-	6	F, T					
	(CP- Complex Problems, CA-Complex Quiz; ASG – Assignment; Pr – Presenta		_				•					

Radiation sources: fast electron sources, heavy charged particles sources, sources of electromagnetic radiation, and neutron sources;

Statistics of radiation counting: characteristics of data, statistical models, applications of statistical models, propagation of errors, optimization of counting experiments, limits of detectability, distribution of time intervals, and curve fitting;

Characteristics and utilization of various detectors: simplified detector model, modes of detector operation, pulse height spectra, sensitivity, energy resolution, detection efficiency, dead time; radiation dose measurements of ionization chambers.

Detection of nuclear radiation:

- (a) detection of charged particles, nuclear interaction with matter, bubble chamber, photographic emulsion, scintillation detectors, Cerenkov detector, P.M. Tubes, semiconductor detector, thermoluminescent dosimeter:
- (b) neutral particle detection, neutron detection, detector based on boron reaction, time of flight technique, proton recoil telescope, neutron detection by activation foils;

Gamma-ray detection methods and spectrometers, Germanium detectors (HPGe), and Compton scattering detectors.

Detector efficiencies: standardization of radioactive sources, calibration of detectors, absolute counting, source geometry, source absorption, air and window effects, source dilution, measurement of very short and very long half-lives.

SKILL MAPPING (CO-PO MAPPING)

NI-	Commo I comino Onto mo	PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Apply fundamentals of radiation detection principle in solving various engineering problem related to radiation phenomena.												
CO2	Analyze the methods of radiation detection.		3										
CO3	Evaluate the process of radiation detection and counting statistics.			3									
CO4	Formulate the methodology for the calibration and counting efficiency of the radiation detectors.		3										

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	In order to apply fundamentals of radiation detection and measurement theory in solving various engineering problem related to process of energy transfer, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.
CO2-PO2	3	In order to analyze the methods of radiation detection, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.

СОЗ-РОЗ	3	In order to design the methodology for the design and development of detectors for radiation detection and measurement, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety,
		cultural, societal, and environmental considerations.

CO4-PO2	3	In order to design the methodology for the design and development of detectors for radiation detection and measurement, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
---------	---	---

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Weeks	Topics			
Week-1	Fast electron sources, heavy charged particles sources, sources of electromagnetic radiation, and neutron sources;			
Week-2	Characteristics of data, statistical models, applications of statistical models, propagation of errors	1, Final Exam		
Week-3	Optimization of counting experiments, limits of detectability, distribution of time intervals, and curve fitting			
Week-4	Simplified detector model, modes of detector operation, pulse height spectra			
Week-5	Sensitivity, energy resolution, detection efficiency, dead time	Class Test 2, Final		
Week-6	Radiation dose measurements of ionization chambers.	Exam		
Week-7	Revision			
Week-8	Detection of charged particles, nuclear interaction with matter, bubble chamber, photographic emulsion, scintillation detectors, Cerenkov detector, P.M. Tubes,			

	semiconductor detector, thermo-luminescent dosimeter	
		Final
Week-9	Neutral particle detection, neutron detection, detector based on boron reaction, time of flight technique, proton recoil telescope, neutron detection by activation foils	Exam
Week-10	Gamma-ray detection methods and spectrometers, Germanium detectors (HPGe), and Compton scattering detectors	
Week-11	Standardization of radioactive sources, calibration of detectors, absolute counting, source geometry	

Week-12	Source absorption, air and window effects, source dilution	Class Test
Week-13	Measurement of very short and very long half-lives	3, Final Exam
Week-14	Revision	Exam

Components		Grading	CO	Blooms Taxonomy
Continuous Assessment (40%)	Class Test/ Assignment (1-3)	20%	CO1, CO3, CO4	C3, C5, C6
	Class Participation and Class attendance	5+5= 10%	CO3	C5
	Mid term	10%	CO2	C4
Final Examina	tion	60%	CO1-CO4	C3-C6
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- Knoll, Glenn F. *Radiation detection and measurement*, 4th edition, United Sates: John Wiley & Sons, 2010.
 Cember, Herman, Thomas E. Johnson, and Parham Alaei. *Introduction to health physics*, 4th edition, New York, USA: McGraw Hill, 2008.

REFERENCE SITE

Level-3, Term-I

	COURSE INFORMATION				
Course Code Course Title	: NE 302 : Radiation Detection and Measurement Sessional	Lecture Contact Hours Credit Hours	: 1.50 : 0.75		
	PRE-REQUISITE				

	T						
	NE 301						
	CURRICULUM STRUCTURE						
	Outcome Based Education (OBE)						
	SYNOPSIS/RATIONALE						
	To learn and familiarize the detection of radiation and the medical applications of radiation.						
	OBJECTIVES						
	 To know the Nuclear Instrumentation and Measurement. To understand the operation of different radiation measurement technique. To understand the statistical analysis of the radioactive samples. To understand the radiation survey techniques. 						
	LEARNING OUTCOMES						
	 Apply the different measurement technique to detect radioactivity and follow radiation safety during experimentation. Design and solve real life problems adapting to the specified requirements using both simulating tools and hardware. 						
	COURSE OUTCOMES & GENER	RIC SKILLS					
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Apply the different measurement technique to detect radioactivity and follow radiation safety during experimentation.	PO1, PO4	C3	-	2	1-3	R, Q, T,
CO2	Design and solve real life problems adapting to the specified requirements using both simulating tools and hardware.	PO5	C6	1	3	1- 3, 5	R, Q, T, Pr, P4
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)						
	COURSE CONTENT						
	 Background radiation measurements. Search for lost point radioactive sources by using radiation survey meter or mobile gamma spectrometry. Determining the Linear Absorption coefficient of Al & Pb using Beer's Law. Gamma-ray spectrometry using NaI(Tl) detector. Experimental determination of FWHM and FWTM of NaI detector for different energies. Determination of the efficiency of NaI(Tl) scintillation detector for different energies of gamma rays. 						
	SKILL MAPPING (CO-PO MAPI	PING)					

Mo	Course I coming Outcome	PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Apply the different measurement technique to detect radioactivity and follow radiation safety during experimentation.				3								
CO2	Design and solve real life problems adapting to the specified requirements using both simulating tools and hardware.					3							

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	In order to apply the different measurement technique to detect radioactivity and follow radiation safety during experimentation, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.
CO1-PO4	3	In order to apply the different measurement technique to detect radioactivity and follow radiation safety during experimentation, it is required to conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
CO2-PO5	3	In order to apply the different measurement technique to detect radioactivity and follow radiation safety during experimentation, It is required create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning Lecture Practical / Tutorial / Studio Student-Centered Learning Self-Directed Learning Preparation of Lab Reports Preparation of Lab Test Preparation of presentation Preparation of Quiz Engagement in Group Projects	14 28 - 14 10 9 -
Formal Assessment Continuous Assessment Final Quiz Total	14 1 90

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Background radiation measurements	
Week-2	Search for lost point radioactive sources by using radiation survey meter or mobile gamma spectrometry	
Week-3	Determining the Linear Absorption coefficient of Al & Pb using Beer's Law	
Week-4	Gamma-ray spectrometry using NaI(Tl) detector	
Week-5	Experimental determination of FWHM and FWTM of NaI detector for different energies	
Week-6	Determination of the efficiency of NaI(Tl) scintillation detector for different energies of gamma rays	
Week-7	Quiz test, Lab Test, Viva	

	Components	Grading	CO	Blooms Taxonomy
Continuous	Lab participation and Report	20%	CO 1, CO2	C3, C6 A1, A2, A5, P1, P4
Assessment (40%)	Labtest-1, Labtest-2	40%	CO 1, CO2	C3, C6 A1, A2, A5, P1, P4
, ,	Project/ Presentation	15%	CO2	C6, P4
Lab Quiz		25%	CO1, CO2	C3, C6 A1, A2, A5, P1, P4
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

1. Ahmed, Syed Naeem. *Physics and engineering of radiation detection.*,1st edition, San Diago, USA: Academic Press, 2007.

REFERENCE SITE

Level-3, Term-I

	COURSE INFORMATION						
Course Code Course Title	: NE 305 : Fluid Mechanics and Machinery	Lecture Contact Hours Credit Hours	: 3.00 : 3.00				
	PRE-REQUISITE						
	None						

	CURRICULUM STRUCTURE							
	Outcome Based Education (OBE)							
	SYNOPSIS/RATIONALE							
	This course is designed to understand the fundamentals of fluid mechanics theory in solving various engineering problem related to pressure and forces and understand the functions of various types of pumps and turbines.							
	OBJECTIVES							
	 To understand the fundamentals of fluid mechanics theory in solving various engineering problem related to pressure and forces. To know the momentum and energy equation in fluid body and engineering fluid mechanics systems using the dimensional analysis and various losses in piping networks. To identify various types of pumps and turbines and their functions. To evaluate various types of pumps and turbines using dimensional and vector analysis. 							
	LEARNING OUTCOMES							
	 Upon completion of the course, the students will be able to Apply the fundamentals of fluid mechanics theory in solving various engineering problem related to pressure and forces. Analyze the momentum and energy equation in fluid body and engineering fluid mechanics systems using the dimensional analysis and various losses in piping networks. Compare the various types of pumps and turbines and their functions. Evaluate the various types of pumps and turbines using dimensional and vector analysis. 							
	4. Evaluate the various types of pur	mps and turbines	s using dimen	sional	and vo	ector a	nalysis.	
	COURSE OUTCOMES & GENER		using dimen	sional	and vo	ector a	nalysis.	
No.			Bloom's Taxonomy	CP	and vo	KP	Assessment Methods	
No.	COURSE OUTCOMES & GENER	RIC SKILLS Corresponding	Bloom's				Assessment	
	COURSE OUTCOMES & GENER Course Learning Outcome Apply the fundamentals of fluid mechanics theory in solving various engineering problem related to	RIC SKILLS Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods	
CO1	Course Learning Outcome Apply the fundamentals of fluid mechanics theory in solving various engineering problem related to pressure and forces. Analyze the momentum and energy equation in fluid body and engineering fluid mechanics systems using the dimensional analysis and various	RIC SKILLS Corresponding POs PO1	Bloom's Taxonomy	CP 1	CA 1	KP	Assessment Methods T, Q, F	
CO1	Course Learning Outcome Apply the fundamentals of fluid mechanics theory in solving various engineering problem related to pressure and forces. Analyze the momentum and energy equation in fluid body and engineering fluid mechanics systems using the dimensional analysis and various losses in piping networks. Compare the various types of pumps	PO1	Bloom's Taxonomy C3	CP 1	CA 1	1 2	Assessment Methods T, Q, F	
CO1 CO2 CO3	Course Learning Outcome Apply the fundamentals of fluid mechanics theory in solving various engineering problem related to pressure and forces. Analyze the momentum and energy equation in fluid body and engineering fluid mechanics systems using the dimensional analysis and various losses in piping networks. Compare the various types of pumps and turbines and their functions. Evaluate the various types of pumps and turbines using dimensional and	PO1 PO2 PO3 Activities, KP-Kn	Bloom's Taxonomy C3 C4 C5 C6 owledge Profil	CP 1 1 2 3 de, T - '	CA 1 1 1 Test; 1	1 2 3 3 PPR - PP	Assessment Methods T, Q, F ASG, F MT, F T, F	

Fundamental concept of fluid as a continuum; fluid statics: basic hydrostatic equation, pressure variation in static incompressible and compressible fluids; manometers; forces on plane and curved surfaces; buoyant force; stability of floating and submerged bodies; pressure distribution of a fluid in a rotating system. Relation between system approach and control volume approach; Conservation of mass, Euler's equation, Bernoulli's equation, Conservation of linear momentum -Cauchy's equation, continuity, momentum and energy equations; special forms of energy and momentum equations and their applications; pressure, velocity and flow measurement devices. Dimensional analysis and similitude; fundamental relations of compressible flow; speed of sound wave; stagnation states for the flow of and ideal gas; flow through converging-diverging nozzles; normal shock; real fluid flow; frictional losses in pipes and fittings, Types of fluid machinery; rotodynamic and positive displacement pumps; Euler pump/turbine; impulse and reaction turbines; centrifugal and axial flow pumps, jet pump; deep well turbine pumps; dimensional analysis applied to fluid machinery: specific speed, unit power, unit speed, unit discharge; performance and characteristics of turbines and pumps; design of pumps; cavitation; reciprocating pump, gear and screw pumps; fans, blowers and compressors; hydraulic transmission: fluid coupling and torque converter; system analysis and selection of fluid machine.

SKILL MAPPING (CO-PO MAPPING)

N.	Course I coming Outcome	PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Apply the fundamentals of fluid mechanics theory in solving various engineering problem related to pressure and forces.	3											
CO2	Analyze the momentum and energy equation in fluid body and engineering fluid mechanics systems using the dimensional analysis and various losses in piping networks.	3											
CO3	Compare the various types of pumps and turbines and their functions.		3										
CO4	Evaluate the various types of pumps and turbines using dimensional and vector analysis.			3									

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	The knowledge of mathematics, science, engineering fundamentals is required to apply fundamentals of fluid mechanics theory in solving various engineering problem related to pressure and forces.
CO2-PO1	3	The knowledge of mathematics, science, engineering fundamentals is required to analyze the momentum and energy equation in fluid body and engineering fluid mechanics.
CO3-PO2	3	In order to explain multi-phase flow, convective boiling to reactor coolant channel process and radiative heat transfer, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.

CO4-PO3	3	In order to evaluate the various types of pumps and turbines us and vector analysis, it is required to design solutions for comproblems and design systems, components or processes that meet with appropriate consideration for public health and safety, cult environmental considerations.	plex engineering et specified needs			
TEACHING I	LEARNING STRATE	GY				
Teaching and I	Learning Activities		Engagement (hours)			
	Face-to-Face Learning	g				
	Lecture		42			
		torial / Studio	-			
	Student-Cent	tered Learning	-			
	Self-Directed Learnin					
	Non-face-to-	face learning	84			
	Revision		21			
	Formal Assessment					
	Continuous A	Assessment	2			
	Mid-Term Final Examin	action	1			
	Total	iation	3 153			
			133			
TEACHING I	METHODOLOGY					
Lecture and Di	scussion, Co-operative	and Collaborative Method, Problem Based Method				
COURSE SCI	HEDULE					
Weeks		Topics	Remarks			
Week-1		ot of fluid as a continuum; Pressure variation in station ompressible fluids; Manometers	Class Test			
Week-2		hydrostatic equation; Forces on plane and curved surface ity of floating and submerged bodies	1, Final Exam			
Week-3	Pressure distribution approach and control	of a fluid in a rotating system; Relation between system volume approach	n Exam			
Week-4		am and energy equations; Special forms of energy and as and their applications; Pressure, velocity and flow				
Week-5	Dimensional analysis	and similitude	Class Test			
Week-6		is of compressible flow; Speed of sound wave; Stagnation and ideal gas; Flow through converging-diverging nozzles;	HV9m			
Week-7	Real fluid flow; Fricti	ional losses in pipes and fittings				
Week-8	Types of fluid machin	nery; Rotodynamic and positive displacement machines	Mid Term,			
Week-9	Velocity diagrams and Euler pump/turbine equation; Impulse and reaction turbines					
Week-10	Centrifugal and axial	flow pumps; Deep well turbine pumps	Final Exam			
Week-11	Dimensional analysis	applied to fluid machinery: specific speed, unit power, uni	t Class Test			
	speed, unit discharge		3, Final			

Performance and characteristics of turbines and pumps; Design of pumps, jet pump

Exam

Week-12

Week-13	Cavitation; Reciprocating pump, gear and screw pumps; Fans, blowers and	
	compressors	
Week-14	Hydraulic transmission: fluid coupling and torque converter; System analysis and selection of fluid machine	

Components		Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C3, C4, C6
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C3, C4
, ,	Mid term	10%	CO3	C5
	Final Examination	60%	CO1-CO4	C3-C6
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Cengel, Y. A. and Cimbala, J. M. Fluid Mechanics: Fundamentals and Applications, McGraw-Hill, 2010.
- 2. Franzini, Joseph B., E. John Finnemore, and Robert Long Daugherty. *Fluid Mechanics with Engineering Applications*. McGraw-Hill College, 1997.
- 3. Fox, Robert W., and Alan T. Mc Donald. Introduction to fluid mechanics, John wiley and sons, 2003.
- 4. White, Frank M. Fluid mechanics. USA: Tata McGraw-Hill Education, 1979.
- 5. Rao, NS Govinda. Fluid flow machines. USA: Tata McGraw-Hill, 1983.
- 6. Dixon, S. Larry, and Cesare Hall. Fluid mechanics and thermodynamics of turbomachinery, 7th edition. Butterworth-Heinemann, 2013.

REFERENCE SITE

Level-3, Term-I

	COURSE INFORMATION					
Course Code Course Title	: NE 306 : Fluid Mechanics and Machinery Sessional	Lecture Contact Hours : 1.50 Credit Hours : 0.75				
	PRE-REQUISITE					
	NE 351					
	CURRICULUM STRUCTURE					
	Outcome Based Education (OBE)					
	SYNOPSIS/RATIONALE					
	This course is designed to learn and familiarize with the basics of fluid mechanics and machinery.					

	OBJECTIVES							
	To verify practically the theories and concepts learned in NE 351.							
	LEARN	NING OUTCOMES						
	Upon co	ompletion of the course, the s	tudents will be a	ble to				
		mine the fluid characteristics luate fluid machineries chara						
	COUR	SE OUTCOMES & GENE	RIC SKILLS					
No.	Co	ourse Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1		e the fluid characteristics.	PO3, PO4	C4	2	2	4	R, Q, T
CO2	Evaluate character		PO3, PO9	C6	3	3	5	R, MT, T
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)							
	COURSE CONTENT							
	 Verification of Bernoulli's equation. Study of flow through a Venturimeter. Study of fluid friction in a pipe. Introduction to Centrifugal Pump characteristics. Study of Propeller Turbine characteristics. 							
	SKILL MAPPING (CO-PO MAPPING)							
	No.	Course Learning	g Outcome	-	ROGR 2 3 4		TCON 7 8	MES (PO) 9 10 11 12
	CO1	Examine the fluid characterist	ics.		3 3	+ + -	, 0	7 10 11 12
	CO2	Evaluate fluid machineries ch	aracteristics.		3			2
	(3 – High, 2- Medium, 1-low)							

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO3	3	Upon formulation, mathematical analysis and reasoning, valid conclusions are made to meet selection and desired performance needs of new heterojunction devices within realistic constraints for serving practical purposes.
CO1-PO4	3	Though any experimental investigation is out of the scope of this course, but to interpret the data obtained from researches and making valid conclusions about that, it is required to be familiarized with the similar type of experimental research-based knowledge and the results obtained by these investigations.
CO2-PO3	3	Upon formulation, mathematical analysis and reasoning, valid conclusions are made to meet selection and desired performance needs of new heterojunction devices within realistic constraints for serving practical purposes.
CO2-PO9	2	The design problems involve discussions and brainstorming as an individual and as a whole in a group. Thus, the ability to work in a team is developed.

TEACHING LEARNING STRATEGY					
Teaching and Learning Activities	Engagement				
	(hours)				
Face-to-Face Learning					
Lecture	14				
Practical / Tutorial / Studio	28				
Student-Centered Learning	-				
Self-Directed Learning					
Preparation of Lab Reports	14				
Preparation of Lab Test	10				
Preparation of presentation	9				
Formal Assessment					
Continuous Assessment	14				
Final Quiz	1				
Total	90				

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics				
Week-1	Verification of Bernoulli's Equation				
Week-2	Study of flow through a Venturimeter				
Week-3	Study of fluid friction in a pipe				
Week-4	Introduction to Centrifugal Pump characteristics				
Week-5	Study of Propeller Turbine characteristics				
Week-6	Practice Lab, Quiz test, Project submission				
Week-7	Lab Test, Viva				

ASSESSMENT STRATEGY

Cor	Grading	CO	Blooms Taxonomy	
	Class Participation + Attendance	15%	CO1	C4
Continuous	Conduct of Lab Test	20%	CO1, CO2	C4, C6
Assessment (60%)	Report Writing	15%	CO1, CO2	C4, C6
	Mid term	15%	CO2	C6
Final Francisco (400/)	Exam	30%	CO1, CO2	C4, C6
Final Evaluation (40%)	Viva Voce/ Presentation	10%	CO1, CO2	C4, C6
Tot	100%			

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Cengel, Y. A. and Cimbala, J. M. Fluid Mechanics: Fundamentals and Applications, McGraw-Hill, 2010.
- 2. Fluid Mechanics with Engineering Applications Robert L. Daugherty, Joseph B. Franzini, E. John Finnemore, Mc Graw-Hill companies, 8th edition, 1985.

REFERENCE SITE

Level-3, Term-I

	COURSE INFORMATION					
Course Code Course Title	: NE 307 : Reactor Theory and Analysis – II	Lecture Contact Hours : 3.00 Credit Hours : 3.00 : 3.00				
	PRE-REQUISITE					
	NE 207					
	CURRICULUM STRUCTURE					
	Outcome Based Education (OBE)					
	SYNOPSIS/RATIONALE					

	This course is designed to develop understanding on the reactor kinetics and transfer function in reactor engineering and develop analyzing capability on propagation of a neutron beam.								
	OBJECTIVES	OBJECTIVES							
	 To understand reactor kinetics and transfer function in nuclear engineering. To understand the propagation of a neutron beam in a passive medium. To know the analysis of criticality of heterogeneous and homogeneous reactors and reactivity worth of partially inserted control rod. To understand the perturbation theory and its application. To calculate multi neutron diffusion equation in passive media with an external source. 								
	LEARNING OUTCOMES								
	 Upon completion of the course, the students will be able to Apply reactor kinetics and transfer function in nuclear reactor engineering. Analyze the criticality of heterogeneous and homogeneous reactors and also analyze reactivity worth of partially inserted control rod. Explain scalar neutron flux and neutron current, perturbation theory and its application. Evaluate multi neutron diffusion equation in passive media with an external source, Fermi age calculation, and neutron migration length. 								
	COURSE OUTCOMES & GENER		T = 2 .	1	1	1			
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods		
CO1	Apply reactor kinetics and transfer function in nuclear reactor engineering.	PO1, PO2	C3	-	-	3	T, Q, F		

function in nuclear reactor engineering.

CO2	Analyze the criticality of heterogeneous and homogeneous reactors and also analyze reactivity worth of partially inserted control rod.	PO3	C4	-	-	4	ASG, F
CO3	Explain scalar neutron flux and neutron current, perturbation theory and its application.	PO3	C5	-	-	5	MT, F
CO4	Understand multi neutron diffusion equation in passive media with an external source, and Fermi age theory.	PO3	C5	1	-	6	T, F
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)						
	COURSE CONTENT						
	Reactor kinetics and transfer function neutron flux and neutron current. multiplication factor for a homogenous analysis of heterogeneous and homo Perturbation Theory and its application scattering kinematics, Fermi age theor production and equilibrium of Xe, Sm	Reactor critical reactor geneous reactor restrictions: Reactivity wory, and neutron management of the reactor restriction of the restriction of the reactor restriction of the	ality calculator, heterogends. Nodal Ana orth of Partial	tions, eous tl llysis, ly Inse	the cherma Sn merted C	calcula l react ethod, Contro	ation of the tor, criticality , Dn method, l Rod, Elastic
	SKILL MAPPING (CO-PO MAPI	PING)					

NT.			PROGRAM OUTCOMES (PO)										
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Apply reactor kinetics and transfer function in nuclear reactor engineering.	3	3										
CO2	Analyze the criticality of heterogeneous and homogeneous reactors and also analyze reactivity worth of partially inserted control rod.			2									
CO3	Explain scalar neutron flux and neutron current, perturbation theory and its application.			3									
CO4	Understand multi neutron diffusion equation in passive media with an external source, and Fermi age theory.			3									

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	In order to apply reactor kinetics and transfer function in nuclear reactor engineering, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.

CO1-PO2	3	In order to apply reactor kinetics and transfer function in nuclear reactor engineering, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO2-PO3	2	In order to analyze the criticality of heterogeneous and homogeneous reactors and also analyze reactivity worth of partially inserted control rod, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
CO3-PO3	3	In order to explain scalar neutron flux and neutron current, perturbation theory and its application, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
CO4-PO3	3	In order to evaluate multi neutron diffusion equation in passive media with an external source, Fermi age calculation, and neutron migration length, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Reactor kinetics and transfer function	Class Test
Week-2	Propagation of a neutron beam in a passive medium	1, Final
Week-3	Scalar neutron flux and neutron current	Exam
Week-4	The multi neutron diffusion equation	
Week-5	Solution of the neutron diffusion equation for passive media with an external neutron source	Class Test 2, Final
Week-6	Reactor criticality calculations	Exam

Week-7	Criticality analysis of heterogeneous and homogeneous reactors	
Week-8	Reactivity worth of partially inserted control rod	Mid
Week-9	Nodal Analysis	Term, Final
Week-10	Sn method	Exam
Week-11	Dn method	
Week-12	Perturbation Theory and its applications	Class Test
Week-13	Elastic scattering kinematics	3, Final Exam
Week-14	Fermi age calculation, and neutron migration length	

Components		Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C3, C4, C5
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C3, C4
	Mid term	10%	CO3	C5
Final Examination		60%	CO1-CO4	C3-C5
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. E.E. Lewis, *Fundamentals of Nuclear Reactor Physics*, 1st edition, Massachusetts, USA: Academic Press, 2008.
- 2. Waltar, Alan, and Donald Todd. *Fuel Pin Thermal Performance: Fast Spectrum Reactors*. Boston, USA: Springer, 2012.
- 3. Lamarsh, J.R. and Baratta, A.J., *Introduction to Nuclear Reactor Theory*, 3rd edition, USA: Pearson, 2001.

REFERENCE SITE

Level-3, Term-I

	COURSE INFORMATION					
Course Code Course Title	: NE 317 : Nuclear Security and Safeguard Engineering	Lecture Contact Hours Credit Hours	: 3.00 : 3.00			
	PRE-REQUISITE					
	None					

	CURRICULUM STRUCTURE								
	Outcome Based Education (OBE)								
	SYNOPSIS/RATIONALE								
	This course is designed to provide a general introduction to nuclear security and safeguard acts on nuclear sector. It will introduce the important concepts such as physical protection regime and layers, graded approach, category of nuclear material, Physical Protection System (PPS) designs for protection of nuclear material, radiation and associated facilities and analyze Design Basis Threat (DBT) on boarder, airport, sea port. Apart from these, this course will also introduce the important topics including inspection guidance, assessment methodology for nuclear security cultures, insider threats analysis, cyber security, nuclear security event response and neutralization.								
	OBJECTIVES								
	 To understand the fundamentals of physical protection regime and layers, graded approach, defence in depth, Physical Protection System (PPS) design architecture for protection of nuclear material and radioactive sources during use, storage, and transport. To study on national legislative and regulatory frameworks and international nuclear security instruments. To know risk, threat characteristics, and threat assessments. To know NPT, IAEA safeguards systems, evolving safeguards implementation, safeguards agreements, additional protocol agreements, national regulatory framework for safeguards 								
	policy and regulation. 5. To understand the nuclear securi 6. To acquire knowledge on safegu and SSAC.			guards	s verif	icatio	n systems,		
	LEARNING OUTCOMES								
	 Upon completion of the course, the students will be able to Apply nuclear security and safeguard acts on nuclear sector. Explain safeguards agreements, additional protocol agreements, national regulatory framework for safeguards policy and regulation. Analyze physical protection regime, Physical Protection System (PPS) designs for protection of nuclear material, radiation and associated facilities. Evaluate safeguards information system, safeguards verification systems, enrichment and reprocessing facilities, safeguards R&D for advanced nuclear fuel cycles. 								
	COURSE OUTCOMES & GENEI	RIC SKILLS							
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods		
CO1	Apply nuclear security and safeguard acts on nuclear sector.	PO1	C3	-	-	3	T, Q, F		
CO2	Explain safeguards agreements, additional protocol agreements, national regulatory framework for safeguards policy and regulation.	PO2	C5	-	-	4	ASG, F		

CO3	Analyze physical protection regime, Physical Protection System (PPS) designs for protection of nuclear material, radiation and associated facilities.	PO2	C4	-	-	5	MT, F
CO4	Evaluate safeguards information system, safeguards verification systems, enrichment and reprocessing facilities, safeguards R&D for advanced nuclear fuel cycles.	PO3	C5	1	-	6	T, F
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)						
	COURSE CONTENT						

Definition of nuclear security; threat, theft, sabotage, nuclear attacks, historical developments, international protocols, UNSCR-1373, 1540, IAEA nuclear security document series and hierarchy, member state's obligations towards nuclear security, legal and non-legal binding instruments for member states, legislative and regulatory framework for nuclear security, physical protection regime and layers, graded approach, category of nuclear material, Physical Protection System (PPS) designs for protection of nuclear material, radiation and associated facilities, Design Basis Threat (DBT) analysis, detection architecture (boarder, airport, sea port), regulation for nuclear material and radioactive sources in storage and transport, export and import control, assessment methodology for nuclear security cultures, insider threats analysis, cyber security, nuclear security event response and neutralization.

NPT, IAEA safeguards systems, evolving safeguards implementation, safeguards agreements, additional protocol agreements, national regulatory framework for safeguards policy and regulation, nuclear material facility inspection guidance, state-level and integrated safeguards concepts, State Systems Accounting for and Control (SSAC) of nuclear material, safeguards reporting system, safeguards information system, safeguards verification systems, NDAS and DAS, safeguards challenges for fuel fabrication, enrichment and reprocessing facilities, safeguards R&D for advanced nuclear fuel cycles.

SKILL MAPPING(CO-PO MAPPING)

NI-	Course I coming Outcome			P	ROC	3RA	AM (OUT	COM	1ES	(PO)		
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Apply nuclear security and safeguard acts on nuclear sector.	3											
CO2	Explain safeguards agreements, additional protocol agreements, national regulatory framework for safeguards policy and regulation.		3										
CO3	Analyze physical protection regime, Physical Protection System (PPS) designs for protection of nuclear material, radiation and associated facilities.		3										
CO4	Evaluate safeguards information system, safeguards verification systems, enrichment and reprocessing facilities, safeguards R&D for advanced nuclear fuel cycles.			3									

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	In order to apply nuclear security and safeguard acts on nuclear sector, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.
CO2-PO2	3	In order to explain safeguards agreements, additional protocol agreements, national regulatory framework for safeguards policy and regulation, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.

CO3-PO2	2	In order to analyze physical protection regime, Physical Protection System (PPS) designs for protection of nuclear material, radiation and associated facilities, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO4-PO3	2	In order to evaluate safeguards information system, safeguards verification systems, enrichment and reprocessing facilities, safeguards R&D for advanced nuclear fuel cycles, it is required to conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Definition of nuclear security; threat, theft, sabotage, nuclear attacks, historical developments, international protocols	Class Test
Week-2	UNSCR-1373, 1540, IAEA nuclear security document series and hierarchy, member state's obligations towards nuclear security	1, Final Exam
Week-3	Legal and non-legal binding instruments for member states, legislative and regulatory framework for nuclear security, physical protection regime and layers	Exam
Week-4	Graded approach, category of nuclear material, Physical Protection System (PPS) designs for protection of nuclear material	
Week-5	Detection architecture (boarder, airport, sea port), regulation for nuclear material and radioactive sources in storage and transport	Class Test 2, Final
Week-6	Export and import control, assessment methodology for nuclear security cultures	Exam
Week-7	Radiation and associated facilities, Design Basis Threat (DBT) analysis	
Week-8	Safeguards information system, safeguards verification systems	Mid
Week-9	Nuclear security event response and neutralization, NPT, IAEA safeguards systems	Term, Final
Week-10	Safeguards challenges for fuel fabrication	Exam

Week-11	Enrichment and reprocessing facilities	
Week-12	Nuclear material facility inspection guidance, state-level and integrated safeguards concepts	Class Test 3, Final
Week-13	Safeguards R&D for advanced nuclear fuel cycles	Exam
Week-14	Syllabus and previous year question analysis	

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C3, C5
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C3, C5
	Mid term	10%	CO3	C4
Final Examination		60%	CO1-CO4	C3-C5
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Maiani Luciano, Abousahl, Said, Plastino, Wolfango, *International Cooperation for Enhancing Nuclear Safety, Security, Safeguards and Non-proliferation*, 1st edition, Rome, Italy: Springer International Publishing 2015.
- 2. Doyle, James, *Nuclear safeguards, security and nonproliferation: achieving security with technology and policy*, 2nd edition, USA: Butterworth-Heinemann, 2011.
- 3. International Atomic Energy Agency, *Nuclear Material Accounting Handbook*, services series no. 15, IAEA, Vienna (2008).
- 4. International Atomic Energy Agency, *Objective and Essential Elements of a State's Nuclear Security Regime*, IAEA Nuclear Security Series No. 20, IAEA, Vienna (2013).

REFERENCE SITE

Level-3, Term-I

	COURSE INFORMATION		
Course Code Course Title	: NE 318 : Nuclear Security and Safeguard Engineering Sessional	Lecture Contact Hours Credit Hours	: 1.50 : 0.75
	PRE-REQUISITE		
	NE 317		
	CURRICULUM STRUCTURE		
	Outcome Based Education (OBE)		

SYNOPSIS/RATIONALE This course is designed to provide a general idea on simulation and practical based application on nuclear security and safeguard. This course will also introduce the practical part of several important topics including inspection guidance, assessment methodology for nuclear security cultures, insider threats analysis, cyber security, nuclear security event response. **OBJECTIVES** 1. To enable the students to design and analyze the Physical Physical Protection System (PPS) to secure nuclear materials. 2. To make students acquainted with IAEA safeguards system and its application. 3. To be familiar with different procedure in practical to ensure safeguard act. 4. To impart into students the safeguards with verification systems, enrichment and reprocessing facilities. LEARNING OUTCOMES Upon completion of the course, the students will be able to 1. Apply safeguard knowledge to prevent nuclear proliferation. 2. Analyze Physical Protection System (PPS) and adapt to the specified requirements using both simulating tools and hardware. 3. Design simple Physical Protection System (PPS) to secure nuclear materials. **COURSE OUTCOMES & GENERIC SKILLS** Corresponding Bloom's Assessment CA CP KP No. Course Learning Outcome Methods POs **Taxonomy Apply** safeguard knowledge to prevent CO₁ PO1 C3 3 R, Q, T nuclear proliferation. Analyze Physical Protection System (PPS) and adapt to the specified MT, R, Q,CO2 PO2 C4 2 1 4 requirements using both simulating Т tools and hardware. **Design** a simple Physical Protection CO₃ System (PPS) to secure nuclear PO4 R, Q, T, PR C6 1 1 7 materials. (CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T - Test; PR - Project; Q -Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam) **COURSE CONTENT** 1. Analysis of Probabilistic Risk Assessment (PSA) inside the Pressurized Water Reactor (PWR). 2. Application of malicious software in order to ensure cyber security of the NPP. 3. Practice of emergency preparedness and activities for NPP workers and employees on transient 4. Analysis of emergency mode operation in case of any transient situation inside the reactor. 5. Analysis of Physical Protection System (PPS) to prevent any kind of sabotage and removal of nuclear materials. 6. Design a Physical Protection System (PPS) to prevent any kind of sabotage and removal of nuclear materials.

	SKILL	MAPPING(CO-PO MAPPING)													
	No.	Course I	earning Outcome								COM			ı		
	110.			1	2	3	4	5	6	7	8	9	10	11	12	
	CO1	prevent nucle	guard knowledge to ar proliferation.	3												
	CO2	System (PPS specified req	Physical Protection S) and adapt to the uirements using both ols and hardware.		3											
	CO3	Protection Sy nuclear mater					2									
	(3 – Hig	h, 2- Medium,	1-low)													
JUSTIFICAT	ION FO	R CO-PO M	APPING													
Mapping		esponding of Matching				Jı	ıstif	icat	ion							
CO1-PO1		3	Knowledge of both sc. PPS.	ienti	fic ar	nd sa	fegu	ard	fund	lame	ntals	are	requi			
CO2-PO2		3	Security will be ensured by finding relevant problems and its c solution.					corresponding								
CO3-PO4	3-PO4 2 Designing a PPS by following proper IAEA guidance.															
TEACHING I	LEARNI	NG STRATE	CGY													
Teaching and I	Learning A	Activities												Engageme nt (hours)		
		Student-Cen	utorial / Studio tered Learning												14 28 -	
	Self-Di	rected Learnin	•												14	
		_	of Lab Reports of Lab Test												10	
	Preparation of Lab Test Preparation of presentation Preparation of Quiz							9								
	Engage	ment in Grou Formal Asse	•													
	Continuous Assessment Final Quiz						1 1									
	Total	Xn15													90	
TEACHING N	METHO	DOLOGY														
Lecture and Di	scussion,	Co-operative	and Collaborative Me	etho	d, Pı	oble	em I	Base	ed M	letho	od					
COURSE SCI	HEDULE	2														
Weeks			Торі	ics										Re	marks	

Week-1	Analysis of Probabilistic Risk Assessment (PSA) inside the Pressurized Water Reactor (PWR)	
Week-2	Application of malicious software in order to ensure cyber security of the NPP	
Week-3	Practice of emergency preparedness and activities for NPP workers and employees on transient situation	
Week-4	Analysis of emergency mode operation in case of any transient situation inside the reactor	
Week-5	Analysis of Physical Protection System (PPS) to prevent any kind of sabotage and removal of nuclear materials	
Week-6	Design a Physical Protection System (PPS) to prevent any kind of sabotage and removal of nuclear materials	
Week-7	Lab test, Quiz	

Components	Grading	CO	Blooms Taxonomy
Conduct of Lab Tests/Class Performance	25%	CO1, CO2, CO3	C3, C4, C6
Report Writing/ Programming	15%	CO1, CO2, CO3	C3, C4, C6
Mid-Term Evaluation (exam/project/assignment)	20%	CO2	C4
Viva Voce	10%	CO1, CO2, CO3	C3, C4, C6
Final Evaluation (Lab Quiz)	30%	CO1, CO2, CO3	C3, C4, C6
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. International Cooperation for Enhancing Nuclear Safety, Security, Safeguards and Non-proliferation, Maiani Luciano, Abousahl, Said, Plastino, Wolfango (Eds.), 2015.
- 2. James Doyle *Nuclear Safeguards, Security and Nonproliferation: Achieving Security with Technology and Policy*, ISBN 978, 2008
- *3. Nuclear Security Series #11, #13, #20*

REF	CD	T'NI	TE (NAME
K H, H	нκ	HING	. 14.8	51 I F.

Level-3, Term-II

	COURSE INFORMATION		
Course Code Course Title	: NE 320 : Industrial Training	Lecture Contact Hours Credit Hours	: 5 weeks : 1.5
	PRE-REQUISITE		
	None		

	CURRICULUM STRUCTURE							
	Outcome Based Education (OBE)							
	SYNOPSIS/RATIONALE							
	Industrial training helps learners to acquire the latest techniques, skills, methodologies and to build a strong foundation for their career growth. In a nutshell, it helps in boosting career of students, since by the end of this training; students are turned into professionals in their specialized area.							
	OBJECTIVES							
	 To provide comprehensive learning ability skills and become job read To provide learners hands on practice. 	dy along with re	al corporate e	exposu		nance t	heir employ	
	LEARNING OUTCOMES							
	 Upon completion of the course, the students will be able to Interview the people involved in design, construction of NPP. Identify required skills for reactor operation and maintenance. Utilize management tools to handle different categories reactor control systems. Plan the crisis management and resolve the conflicts amongst subordinates. Understand management and operation and maintenance of radiological equipment in medical sector. Take part in decision making process. 							
	COURSE OUTCOMES & GENER	RIC SKILLS						
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods	
CO1	Interview the people involved in design , construction of NPP.	PO1	C3	1		4-6	Rp, Pr, WS	
CO2	Identify required skills for reactor operation and maintenance.	PO1	C3	1		6	Rp, Pr, WS	
CO3	Utilize management tools to handle different categories reactor control systems.	PO5	C3	7		5-6	Rp, Pr, WS	
CO4	Plan the crisis management and resolve the conflicts amongst subordinates.	PO9	C6	7		5-6	Rp, Pr, WS	
CO5	Understand management and operation and maintenance of radiological equipment in medical sector. PO3 C2 1 4-6 Rp, Pr, WS							
CO 6	Take part in decision making process.	PO12	C4	1		4-6	Rp, Pr, WS	
	(CP – Complex Problems, CA – Complex Activities, KP – Knowledge Profile, R – Regularity in Work and Attendance, KS – Knowledge Skill, WS – Working Skill and Work Performance, Pr – Presentation, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Rp - Report; F – Final Exam)							
	COURSE CONTENT							
	Content is prepared by the specified industries. Student has to apply theoretical and technical knowledge to perform or execute the given task by the specified industries.							

	SKILL	MAPPING	(CO-PO MAPPING)													
	SKILL	MAITING	(CO-10 MAITING)													
	NI.	C I				P	ROC	3RA	M (OUT	COM	1ES	(PO)			
	No.		Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12	
	CO1		truction of NPP.	3												
	CO2		Identify required skills for reactor operation and maintenance.													
	CO3	Utilize mana	gement tools to handle egories reactor control					3								
	CO4	Plan the cr resolve the subordinates.	•									3				
	CO5	Understand operation a radiological sector.	management and nd maintenance of equipment in medical			3										
	CO 6	process.	in decision making												2	
		h, 2- Medium,	·													
JUSTIFICAT			APPING													
Mapping		esponding f Matching				Jı	ıstif	icat	tion							
CO1-PO1		3	In order to interview the people involved in design, construction of NPP, the knowledge of mathematics, natural science, engineering fundamentals and a engineering specialization to the solution of complex engineering problems is be applied.													
CO2-PO1		3	In order to identify rec knowledge of mathen engineering specializa be applied.	natic	s, na	itura	l sci	enc	e, er	ngine	erin	g fu	ndame	entals	and a	
CO3-PO5		3	In order to utilize man systems, it is required and modern engineer complex engineering p	to cr	eate, and	seled IT to	ct an	d ap	ply a	appro	opria oredic	te te	chniqu and	ues, re mode	source	
CO4-PO9		3	In order to plan the subordinates, it is need or leader in diverse tea	led to	o fun	ction	effe	ctiv	ely a	as an	indi	vidu				
CO5-PO3		3	In order to understand management and operation and maintenance of radiological equipment in medical sector, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.													
CO 6-PO12		2	In order to take part in long learning in profes	dec	ision	mak					h wi	ll he	lp to a	chiev	e life-	
TEACHING I	LEARNI	NG STRATE														
		Teaching a	nd Learning Activiti	ies]	Eng	agem	ent (week	
Face-to-Face L	earning											A	s per	indus	tries	
Self-Directed L												A	s per	indus	tries	
Formal Assessi	ment											Ā	s per		stries	
			Total											5		

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

As per industries.

ASSESSMENT STRATEGY

Students have to complete this course within 4 weeks. Schedule is prepared by different industries.

Components	Grading (%)	CO	Blooms Taxonomy
Regularity in work	10	CO1-CO6	C2, C3, C4, C6
Report Writing	20	CO1-CO6	C2, C3, C4, C6
Working Skill and Work Performance	50	CO1-CO6	C2, C3, C4, C6
Final Presentation	20	CO1-CO6	C2, C3, C4, C6
Total Marks	100		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

N/A

REFERENCE SITE

Level-3, Term-II

	COURSE INFORMATION							
Course Code Course Title	: NE 321 : Reactor Operation and Safety	Lecture Contact Hours : 3.00 Credit Hours : 3.00						
	PRE-REQUISITE							
	None							
	CURRICULUM STRUCTURE	CURRICULUM STRUCTURE						
	Outcome Based Education (OBE)							
	SYNOPSIS/RATIONALE							
	This course is designed to provide a general intriction It will introduce the important concepts such as cooling systems of research and power reactor, reactor, operation limits and conditions, safety stresponse and safety culture concept. Apart frostandards for nuclear facilities available in the principles and safety criteria. From this coudeterministic and probabilistic safety analysis for	s research and power reactor of piping and instrumentation dia ystems of research and power re om these, this course will also IAEA and other countries, fu urse students will also learn	peration, different agrams of nuclear factor, emergency introduce safety ndamental safety					

	OBJECTIVES						
	 To understand the general conce; To able to explain and analyze the Probabilistic Safety Analysis (PS) To able to explain the principles at power; pre-nuclear commissions. To able to hypothesize and class phenomena, general problems of 	ne elements of DSA). of reactor opera oning. ify the operation	Deterministic stion, reactor so transients ar	Safety start-u	Analy p sequ	ysis (E ence d	OSA) and & operation
	LEARNING OUTCOMES						
	Upon completion of the course, the s	tudents will be a	ible to				
	 Define the nuclear reactor safety concept. Explain and analyze the elements Explain the principles of reactor pre-nuclear commissioning. Analyze the operation transients of reactor operation 	s of deterministic operation, reacte & severe accide	c and probabi or start-up sec	listic s quence	safety a	analys eratio	is. n at power,
	COURSE OUTCOMES & GENEI	RIC SKILLS					
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessmen Methods
CO1	Define the nuclear reactor safety features, safety principles, safety systems and Safety culture concept.	PO1	C1	-	-	6	T, Q, F
CO2	Explain and analyze the elements of deterministic and probabilistic safety analysis.	PO3	C2, C4	-	-	2,3	ASG, F
CO3	Explain the principles of reactor operation, reactor start-up sequence and operation at power, pre-nuclear commissioning.	PO1	C2	-	-	6	MT, F
CO4	Analyze the operation transients and severe accidents, accident phenomena, general problems of reactor operation.	PO2	C4	1	-	4	T, F
	(CP- Complex Problems, CA-Complex Auguiz; ASG – Assignment; Pr – Presenta						
	COURSE CONTENT	non, K - Keport, I	- I mai Lam	, 1411-	WHG TO		
	Safety characterization and safety fer reactor safety principles and criter systems, containment performance, so culture; operating experience of Reso of reactor operation; principles of confunctions of operators; layout of consequence; pre-nuclear commissions operation at power; reactivity balance	ia, Design-Basi afety issues and earch Reactor at ontrol and operation of the control desks; ving; mechanical	s and Beyor safety issue r and Power Re- ation; method varnings and l and electri	nd-Des resolut actor (ds of c emer	sign-Bion, receipt (PWR) contrologencies	asis e gulati), gene l; rang es; rea	events, safe on and safe eral probler ge of contro actor start-

	CKILI	MADDING (CO-PO MAPPING													
	SKILL	MIAI I ING (CO-1 O MAITING,													
						P	ROC	3RA	MC	OUT	COM	1ES	(PO)			
	No.	Course Le	earning Outcome	1	2	3	4	5	6	7	8	9	10	11	12	
	CO1	features, safet	uclear reactor safety y principles, safety afety culture concept.	3												
	CO2	Explain and a	analyze the elements tic and probabilistic			3										
	CO3	operation, read	orinciples of reactor ctor start-up sequence at power, pre-nuclear	3												
	CO4	and severe phenomena, reactor operati			2											
		h, 2- Medium, 1														
JUSTIFICAT			PPING													
Mapping		esponding of Matching		Justification												
CO1-PO1		3	In order to apply the knowledge of engineering fundamentals and an engineering specialization to the solution of complex nuclear science and engineering problems, definition of the nuclear reactor safety features, safety principles safety systems and safety culture concept are required. In order to design nuclear safety systems, and analysis, components, or processes.													
CO2-PO3		3		lear with	safet nin re	y sys ealist	stem ic co	s, ar onstr	nd ar aint	alys s, ex	is, co plan	ation	and a	nalys		
CO3-PO1		3	In order to apply the specialization to the problems, explanation	order to apply the knowledge of engineering fundamentals and an engineering ecialization to the solution of complex nuclear science and engineering oblems, explanation the principles of reactor operation, reactor start-upuence and operation at power, pre-nuclear commissioning are required.												
CO4-PO2		3	In order to undertake and analyze complex and severe accidents, are required.	pro eng	olem inee	iden	itific prob	atio lem	n, fo s, ar	ormu nalyz	latio ze of	n, re the	search opera	the l	iteratur ansient	
TEACHING I			GY													
Teaching and I													Е	ngag (hot	ement ırs)	
	Face-to	-Face Learning	9												_	
		Lecture	1 / 0											4	2	
		Practical / Tu												-	•	
	Colf Da	rected Learnin	ered Learning													
	Scii-Di	rected Learning Non-face-to-f												84	1	
		Revision	ace learning											2		
	Formal	Assessment														
		Continuous A	ssessment										2			
		Mid-Term											1			
		Final Examin	ation											3	}	

Total

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Safety characterization and safety features of nuclear power plants	Class Test
Week-2	Reactor safety principles and criteria, design-basis and beyond-design-basis events	1, Final
Week-3	Safety systems, containment performance, safety issues and safety issue resolution	Exam
Week-4	Probabilistic Safety Analysis (basic elements), regulation and safety culture	
Week-5	Deterministic Safety Analysis (basic elements)	Class Test
Week-6	Operating experience of Research Reactor and Power Reactor (PWR), general problems of reactor operation	2, Final Exam
Week-7	Principles of control and operation; methods of control; range of control	
Week-8	Functions of operators; layout of control desks; warnings and emergencies	Mid
Week-9	Reactor start-up sequence; pre-nuclear commissioning	Term, Final
Week-10	Mechanical and electrical tests; coolant flow tests	Exam
Week-11	Operation at power; reactivity balance at power operation	
Week-12	Accident management, emergency operation procedure	Class Test
Week-13	Analysis of operation transients, accidents and severe accidents	3, Final Exam
Week-14	Accident phenomena, including severe accidents	

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C1, C2, C4
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C1, C2, C4
, ,	Mid term	10%	CO3	C2
	Final Examination	60%	CO1-CO4	C1, C2, C4
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Pershagen, Bengt, and M. Bowen. *Light Water Reactor Safety*,1st edition, Oxford, United Kingdom:Parmagon Press, 2013.
- 2. Farmer, F. ed. Nuclear Reactor Safety, Chicago, USA: Academic Press, 2012.
- 3. Petrangeli, Gianni. *Nuclear safety*, 2nd edition. Oxford, United Kingdom: Butterworth-Heinemann, 2006.
- 4. Shaw, J., Reactor operation. Oxford, United Kingdom: Pergamon Press, 2013.

REFERENCE SITE

Level 3 Term I

COURSE INFORMATION

Course Code Course Title	: NE 331 : Automation and Control Engineering	ıg	Lecture Con Credit Hours		: 3.0	
	PRE-REQUISITE					
	None					
	CURRICULUM STRUCTURE					
	Outcome Based Education (OBE)					
	SYNOPSIS/RATIONALE					
	Control Systems is the study of the ar systems subject to input signals. The in a wide spectrum of engineerin manufacturing, and biomedical engi theories and feedback controller desi	concepts and too g disciplines so neering. The en	ols discussed i uch as mech nphasis of thi	n this cour anical, ele is course v	se can b ctrical, vill be	be applicable aerospace,
	OBJECTIVES					
	 To introduce the students with Diagram/ Signal Flow Graph (SF To impart the basic knowledge including with their inter-conver To use Routh's stability criteria, to analyze the system stability. To impart in-depth theoretical practical controlling algorithm. 	G) and reduction of electrical, rands sion and system root locus techni	n of complicat mechanical ar transfer funct que, Bode plo	ted system Id electro- Ition. It and Nyqu	to a sin mechar iist stab	nplified one. nical system
	LEARNING OUTCOMES					
	 Upon completion of the course, the s Define Automation, Kinematics, Translate the pneumatic, hydraul circuit model and evaluate the or Interpret the basic concepts of st and the state-space viewpoints. Design control systems using diff 	Manipulators ar ic, and even hea atput characteris ability for variou	nd Explain aut t transfer syste tics with the s us control syst	ems to its e specified in	quivale put.	
	COURSE OUTCOMES & GENER	RIC SKILLS				
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	CP CA	KP	Assessment Methods
CO1	Define Automation, Kinematics, Manipulators and Explain automation strategy	PO1	C1	1 -	3	T, Q, F
CO2	Translate the pneumatic, hydraulic, and even heat transfer systems to its equivalent electrical circuit model and	PO1	C2, C5	1 -	1, 3	ASG, F

	evaluate the output characteristics with the specified input.						
CO3	Interpret the basic concepts of stability for various control systems from both the classical and the statespace viewpoints.	PO1	C2	2	-	3	MT, F
CO4	Design control systems using different automation tools	PO3	C6	3	3	2, 5	T, F
	(CP- Complex Problems CA-Complex	Activities KP-Kn	owledge Profil	е Т_′	Test · I	PR _ P	roject : O =

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Automation strategy, role of automation in industries, benefits of automation, introduction to automation tools programmable logic control, microcontroller, relay etc. Elements of pneumatic and electrical control systems; valves and actuators; stepper motors; case studies of industrial automation systems.

Basic concepts: System, control system, input, output, open-loop and closed loop control systems, elements of a general control system, examples of control system.

Transfer functions and systems response: Review of Laplace transform, impulse, step and Ramp functions, concept of transfer functions of common components, block diagram algebra, signal flow graphs, impulse, step, and ramp response of first and second order systems, characterization of response (time constant, gain, overshoot, rise time, setting time, steady state error, etc.) relation of system response to location of system poles and zeros.

Manipulators: Classification of robot; example of robot application, identification of manipulator components and terminology; joints classification.

Kinematics: Kinematic description of multi-degree of freedom manipulators, joint coordinates, task coordinates, transformation coordinate system, kinematic model, dynamic equation of six degree of freedom robot arm, introduction to Jacobians and dynamic performance. Automation strategy, role of automation in industries, benefits of automation, introduction to automation tools Programmable Logic Controller (PLC), microcontroller, relay etc.

SKILL MAPPING(CO-PO MAPPING)

NT.	Committee Outcome			P	ROC	3RA	M (OUT	CON	1ES	(PO)		
No.	No. Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Define Automation, Kinematics, Manipulators and automation strategy.	3											
CO2	Evaluate the pneumatic, hydraulic, and even heat transfer systems to its equivalent electrical circuit model and the output characteristics with the specified input.	3											
CO3	Interpret the basic concepts of stability for various control systems from both the classical and the statespace viewpoints.	3											

		Design cor	ntrol systems	using		Τ_								
	(3 – Hig		omation tools.	8		2								
JUSTIFICAT	ION FO	R CO-PO M	APPING											
Mapping		esponding of Matching				Jı	ıstifica	tion						
CO1-PO1		3	The knowledge be applied to minimize a con function.	define an	d clas	sify o	differen	t typ	es of	con	itrol	systei	ns as	well
CO2-PO1		3	In order to tran evaluate the or electrical engin	utput chai	acteri	stics,	the kn							
CO3-PO1		3	To interpret the the classical an and electrical s	d the state cience is	-space	e viev ed.	vpoints	the k	nowl	edge	of m	nather	natics	s, scien
CO4-PO3		3	To design a pra or processes th health and safe	at meet sp	ecifie	d nee	ds with	appr	opria	ate co				
TEACHING	LEARNI	NG STRATE	EGY											
Teaching and	Learning .	Activities										Е	ngag (ho	ement urs)
	Face-to	-Face Learnir	ng										4	2
		Lecture	utorial / Studio										4	2
			tered Learning											_
	Self-Di	rected Learning												
	SCII-DI		face learning										8	4
		Revision	8										2	
	Formal	Assessment												
		Continuous	Assessment										2	2
		Mid-Term	_										-	1
	Tr. (1	Final Exami	nation											3
TEACHING	Total METHO	DOLOGY											1:	53
			and Collabora	tive Metl	od, F	roble	em Bas	sed M	/letho	od				
COURSE SC														
Weeks	Τ			Topics									Re	mark
Week-1	Automation strategy, role of automation in industries, benefits of automation				Tr -									
Week-2	Introdu relay et		nation tools pro	ogramma	ble lo	gic c	ontrol,	mic	roco	ntro	ller,			ss Tes Iinal Im
Week-3	Elemen	its of pneuma	tic and electrica		•		valves	and	actu	ators	s; ste	pper		
·		-												

Week-4

Basic concepts: System, control system, input, output, open-loop and closed loop

control systems. elements of a general control system, examples of control system

Class Test

Week-5	Transfer functions and systems response: Review of Laplace transform, impulse, step and Ramp functions	2, Final Exam
Week-6	Concept of transfer functions of common components, block diagram algebra, signal flow graphs, impulse, step, and ramp response of first and second order systems	
Week-7	Characterization of response (time constant, gain, overshoot, rise time, setting time, steady state error, etc.) relation of system response to location of system poles and zeros.	
Week-8	Manipulators: Classification of robot; example of robot application, identification of manipulator components and terminology; joints classification.	Mid Term,
Week-9	Kinematics: Kinematic description of multi-degree of freedom manipulators, joint coordinates.	Final Exam
Week-10	Task coordinates, transformation coordinate system, kinematic model, dynamic equation of six degree of freedom robot arm	
Week-11	Introduction to Jacobians and dynamic performance. Automation strategy	
Week-12	Role of automation in industries, benefits of automation, introduction to automation tools Programmable Logic Controller (PLC),	Class Test 3, Final
Week-13	Microcontroller, relay etc	Exam
Week-14	Review class	

	Components	Grading	CO	Blooms Taxonomy
Cartina	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C1, C2C6
Continuous Assessment	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C1, C2, C5, C6
(40%)	Mid term	10%	CO3	C2
F	Final Examination	60%	CO1-CO4	C1, C2, C5, C6
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Nise, Norman S. Control Systems Engineering, 5th edition, USA: John Wiley & Sons, 2020.
- 2. Ogata, Katsuhiko, and Yanjuan Yang. *Modern Control Engineering*. 5th edition, India: Prentice hall, 2002.
- 3. Dorf, Richard C., and Robert H. Bishop. *Modern Control Systems*, 12th edition, Florida, USA: Addison-Wesley, 1998.
- 4. S Hassan Saeed *Automatic Control Systems*, 1st edition, India: Arihant, 2013.

REFERENCE SITE

Level-3, Term-II

COURSE INFORMATION

Course Code Course Title	: NE 333 : Reactor Instrumentation and Control	Lecture Contact Hours Credit Hours	: 3.00 : 3.00
	PRE-REQUISITE		
	None		
	CURRICULUM STRUCTURE		
	Outcome Based Education (OBE)		

	This course is designed to develor measurements of reactor instruments behaviour of instrumentation on norm during accidental condition in nuclea	ation system wh	nich will enat	ole stu	dents	to unc	derstand th
	OBJECTIVES	a power planes.					
	 To understand the reactor system To understand the details of instr To acquire the knowledge on the microprocessor, micro controller To know the process of data acqu 	rumentation resp instrumentation and nuclear ele	onse on nucle systems of rectronics.	ear acc nuclear	idents powe	er plan	
	LEARNING OUTCOMES						
	 Evaluate sensor performance and Analyze the instrumentation resp Formulate the instrumentation sy micro controller and nuclear elect Apply the data acquisition process flow, pressure and heat flux. 	oonse on nuclear extems of nuclea etronics.	accidents. r power plan	ts incl			•
	COURSE OUTCOMES & GENER	RIC SKILLS					
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessme Methods
CO1	Understand sensor performance and reliability test of reactor systems.	PO1	C5	-	-	3	T, Q, F
CO2	Analyze the instrumentation response on nuclear accidents.	PO1, PO2	C4	-	-	4	ASG, F
CO3	Explain the instrumentation systems of nuclear power plants including microprocessor, micro controller and nuclear electronics.	PO2, PO3	C6	-	-	5	MT, F
	Apply the data acquisition process and						

COURSE CONTENT

Overview of reactor I&C system, NPP I&C system architecture, classification of I&C systems, basic principles of measurements, characteristics and behaviour of typical measuring systems; transfer function measurement systems; basic I&C loop and major loop elements including transmitters, signal conditioner, controllers, actuators and final control elements, instrumentation systems used in NPPs for measurement of temperature, flow, pressure, liquid level, neutron flux, ex-core and in-core nuclear instrumentations; sensor performance and reliability test,; protection systems; calibration; control rod drives and rod position indication system, power supplies; NPP I&C system architecture, classification of I&C systems; Microprocessor, micro controller and nuclear electronics, analytical nuclear instrumentation, data acquisition and data analysis; Piping & Instrumentation Diagram (P&ID); process instrumentation, instrumentation failure in nuclear accidents.

SKILL MAPPING (CO-PO MAPPING)

No	Course I coming Outcome	PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understand sensor performance and reliability test of reactor systems.	3											
CO2	Analyze the instrumentation response on nuclear accidents.	3	3										
CO3	Explain the instrumentation systems of nuclear power plants including microprocessor, micro controller and nuclear electronics.		3	3									
CO4	Apply the data acquisition process and measurements technique to calculate the temperature, flow, pressure and heat flux.	3	3										

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	In order to evaluate sensor performance and reliability test of reactor systems, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is be applied.
CO2-PO1	3	In order to analyze the instrumentation response on nuclear accidents, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.
CO2-PO2	3	In order to analyze the instrumentation response on nuclear accidents, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO3-PO2	3	In order to formulate the instrumentation systems of nuclear power plants including microprocessor, micro controller and nuclear electronics, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO3-PO3	3	In order to formulate the instrumentation systems of nuclear power plants including microprocessor, micro controller and nuclear electronics, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.

CO4-PO1	3	In order to apply the data acquisition process and measurements technique to calculate the temperature, flow, pressure and heat flux, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.
CO4-PO2	3	In order to apply the data acquisition process and measurements technique to calculate the temperature, flow, pressure and heat flux, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement
	(hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Overview of reactor I&C system, NPP I&C system architecture, classification of I&C systems	Class Test
Week-2	Basic principles of measurements	1, Final
Week-3	Characteristics and behaviour of typical measuring systems; transfer function measurement systems	Exam
Week-4	Basic I&C loop and major loop elements including transmitters	
Week-5	Signal conditioner, controllers Actuators and final control elements C 2, E	
Week-6		
Week-7	Temperature, flow, pressure, liquid level sensors	
Week-8	Neutron flux, ex-core and in-core nuclear instrumentations	Mid
Week-9	Sensor performance and reliability test,; protection systems; calibration	Term,
Week-10	control rod drives and rod position indication system, power supplies; NPP I&C system architecture	Final Exam
Week-11	Classification of I&C systems; Microprocessor, micro controller and nuclear electronics	Class Test 3, Final
Week-12	Measurements of temperature	Exam

Week-13	Analytical nuclear instrumentation, data acquisition and data analysis; Piping & Instrumentation Diagram (P&ID)
Week-14	Process instrumentation, instrumentation failure in nuclear accidents

Components		Grading	CO	Blooms Taxonomy		
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C3, C4, C5		
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C4, C5		
	Mid term	10%	CO3	C6		
Final Examination		60%	CO1-CO4	C3-C6		
	Total Marks	100%				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Harrer, Joseph M., and James G. Beckerley. *Nuclear power Reactor Instrumentation Systems Handbook*, vol 2. *US Atomic Energy Commission National Technical Information Services*, Springfield, Virginia 22151 USA, 1975.
- 2. Ahmed, S. N. *Physics and Engineering of Radiation Detection*, 2nd Edition. APA, USA:Academic Press, 2007.
- 3. Holman, Jack Philip. *Experimental methods for engineers*, 6th Edition New York, United States:Mc-Graw Hill 2001.
- 4. Beckwith, Thomas G., Roy D. Marangoni, and John H. Lienhard. *Mechanical Measurements*. New Jarsey, USA: Prentice Hall, 1995.
- 5. Schultz, Mortimer A. Control of Nuclear Reactors and Power Plants, 6th Edition New York, United States McGraw-Hill, 1961.

REFERENCE SITE

Level-3, Term-II

	COURSE INFORMATION					
Course Code Course Title	: NE 334 : Reactor Instrumentation and Control Sessional	Lecture Contact Hours Credit Hours	: 1.50 : 0.75			
	PRE-REQUISITE					
	NE 333					
	CURRICULUM STRUCTURE					
	Outcome Based Education (OBE)					
	SYNOPSIS/RATIONALE					

	This course is designed to provide a general concept regarding practical application of reactor instrumentation and control. Students will be acquainted with the important concepts such as working principle of thermocouple, temperature resistor, pressure gauge and flow meter. Apart from these, this course will also introduce the practical part of several important topics including voltage, current and power measurement by ammeter and voltmeter.						
	OBJECTIVES						
	 To enable the students to analyze and demonstrate the process instrumentation. To make students acquainted with voltage, current and power measurement by ammeter and voltmeter. To verify the measured value with calculated results. To design a simple temperature and pressure measurement system for reactor. 						
	LEARNING OUTCOMES						
	 Analyze and demonstrate the process instrumentation. Measuring voltage, current and power measurement device such as ammeter and voltmeter. Analyzing measured value with calculated results. Design a simple temperature and pressure measurement system for reactor. 						
	COURSE OUTCOMES & GENERIC SKILLS						
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Analyze and demonstrate the process instrumentation.	PO1, PO4	C2, C4	1	2	1,2	Q, R, T
CO2	Measure voltage, current and power measurement device such as ammeter and voltmeter.	PO2, PO5	C5	2	1	6	Q, R, T
CO3	Analyzing measured value with calculated results.	PO1, PO4	C4	2	3	2	Q, R, MT
CO4	Design a simple temperature and pressure measurement system for reactor.	PO4	C6	1	1	5	Q, R, Pr
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)						
	COURSE CONTENT						
	 Errors in measurement and basic statistical sampling. Measurement of medium resistance using wheatstone bridge. Range Extension of Ammeter and Voltmeter. Measurement of Power by a) 3 Voltmeter Method b) 3 Ammeter Method 						
	5. Study of PLC Based Control system SKILL MAPPING (CO-PO MAPPING)						

No.	Course I coming Outcome	PROGRAM OUTCOMES (PO)											
	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Analyze and demonstrate the process instrumentation.	2			3								
CO2	Measuring voltage, current and power measurement device such as ammeter and voltmeter.		2			2							
CO3	Analyzing measured value with calculated results.	2			2								
CO4	Design a simple temperature and pressure measurement system for reactor.				3								

(3 – High, 2- Medium, 1-low)

JUSTIFICAT	JUSTIFICATION FOR CO-PO MAPPING							
Mapping	Corresponding Level of Matching	Justification						
CO1-PO1	2	Knowledge of both scientific and reactor fundamental knowledge is required to analyze and demonstrate the process instrumentation.						
CO1-PO4	3	Design basis knowledge and data interpretation is very important to analyze and demonstrate the process instrumentation.						
CO2-PO2	2	Proper measurement must be ensured by to find the solution of the problem.						
CO3-PO1	2	Knowledge of both scientific and reactor fundamental knowledge is required to analyze measured value with calculated results.						
CO3-PO4	2	Design basis knowledge and data interpretation is very important to analyze measured value with calculated results.						
CO4-PO4	3	Design basis knowledge and data interpretation is very important to design a simple temperature and pressure measurement system for reactor.						

TEACHING LEARNING STRATEGY				
Teaching and Learning Activities	Engageme			
	nt (hours)			
Face-to-Face Learning				
Lecture	14			
Practical / Tutorial / Studio	28			
Student-Centered Learning	-			
Self-Directed Learning				
Preparation of Lab Reports	14			
Preparation of Lab Test	10			
Preparation of presentation	0			
Preparation of Quiz	9			
Engagement in Group Projects				
Formal Assessment				
Continuous Assessment	1			
Final Quiz	1			
Total	90			

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE					
Weeks	Weeks Topics				
Week-1	Errors in measurement and basic statistical sampling				
Week-2	Measurement of medium resistance using Wheatstone Bridge				
Week-3	Range Extension of Ammeter and Voltmeter				
Week-4	Measurement of Power by a) 3 Voltmeter Method b) 3 Ammeter Method				
Week-5	Study of PLC Based Control system				
Week-6	Lab Test, Viva				
Week-7	Quiz				

Components	Grading	CO	Blooms Taxonomy
Conduct of Lab Tests/Class Performance/ Attendance	30%	CO1, CO2	C2, C4, C5
Report Writing/ Programming	15%	CO1, CO2, CO3, CO4	C2, C4, C5, C6
Mid-Term Evaluation (exam/project/assignment)	15%	CO3	C4
Viva Voce	10%	CO1, CO2, CO3, CO4	C2, C4, C5, C6
Final Evaluation (Lab Quiz)	30%	CO1, CO2, CO3, CO4	C2, C4, C5, C6
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Nuclear Power Reactor Instrumentation System Handbook-Joseph M. Harrer and James G.Beckerley
- 2. Electrical Machines Fundamentals Stephan J. Chapman.
- 3. Mechanical Measurements (5th edition) Thomas G. Beckwith, Roy D. Marangoni, John H. Lientard.

REFERENCE SITE

Level-3, Term-II

	COURSE INFORMATION						
Course Code Course Title	: NE 355 : Nuclear Reactor Thermal Hydraulics	: 3.00 : 3.00					
	PRE-REQUISITE						
	NE 243						
	CURRICULUM STRUCTURE						
	Outcome Based Education (OBE)						
	SYNOPSIS/RATIONALE						

This course is designed to provide a general introduction to heat transfer mechanisms and fluid mechanics in fluids and analogies in solving various engineering problem related to process of energy transfer. It will introduce the important concepts such as energy conversion and core flow distribution, reactor heat generation, temperature distributions in fuel elements and transfer, multi-phase flow, convective boiling to reactor coolant channel process and radiative heat transfer. Apart from these, this course will also introduce the important topics including core thermal design, nuclear and thermal-hydraulic operational and accident transient sequences.

OBJECTIVES

- 1. To understand the fundamentals of heat transfer mechanisms and fluid mechanics in fluids and analogies in solving various engineering problem related to process of energy transfer.
- 2. To know energy conversion and core flow distribution, reactor heat generation, temperature distributions in fuel elements and transfer.
- 3. To apply multi-phase flow, convective boiling to reactor coolant channel process and radiative heat transfer.
- 4. To evaluate core thermal design, nuclear and thermal-hydraulic operational and accident transient sequences, and engineering aspects of nuclear reactor safety.

LEARNING OUTCOMES

Upon completion of the course, the students will be able to

- 1. Apply fundamentals of heat transfer mechanisms and fluid mechanics in fluids and analogies in solving various engineering problem related to process of energy transfer.
- 2. Analyze energy conversion and core flow distribution, reactor heat generation, temperature distributions in fuel elements and transfer.
- 3. Explain multi-phase flow, convective boiling to reactor coolant channel process and radiative heat transfer.
- 4. Evaluate core thermal design, nuclear and thermal-hydraulic operational and accident transient sequences, and engineering aspects of nuclear reactor safety.

	COURSE OUTCOMES & GENERIC SKILLS									
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods			
CO1	Apply fundamentals of heat transfer mechanisms and fluid mechanics in fluids and analogies in solving various engineering problem related to process of energy transfer.	PO1, PO2	C3	1	-	3	T, Q, F			
CO2	Analyze energy conversion and core flow distribution, reactor heat generation, temperature distributions in fuel elements and transfer.	PO1, PO2, PO3	C4	2	ı	4, 5	ASG, F			
CO3	Explain multi-phase flow, convective boiling to reactor coolant channel process and radiative heat transfer.	PO1, PO2, PO3	C2	1	-	4	MT, F			
CO4	Evaluate core thermal design, nuclear and thermal hydraulic operational and accident transient sequences, and engineering aspects of nuclear reactor safety.	PO1, PO2, PO3	C5	2	1	3	T, F			

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

Concept of thermal-hydraulics, objectives of nuclear reactor thermal hydraulics, Fundamentals of heat transfer mechanisms and fluid mechanics in fluids and analogies. Energy and core flow distribution, Reactor heat generation and transfer; radial and axial temperature distributions in fuel elements, Applications of single-phase, two-phase flow and convective boiling to reactor coolant channel analysis, core thermal design and safety analysis, Two-phase flow patterns, Critical heat flux, DNBR, AOOs, Void coefficient, Radiative heat transfer, Thermal-hydraulic safety limits and conditions, Current research topics of the nuclear thermal hydraulics concerned with safe and effective heat removal from the reactor core for power production. Analysis of operational and accident transient sequences, nuclear and thermal hydraulic transient, and engineering aspects of

SKILL MAPPING (CO-PO MAPPING)

COURSE CONTENT

nuclear reactor safety.

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
NO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Apply fundamental of heat transfer mechanisms and fluid mechanics in fluids and analogies in solving various engineering problem related to process of energy transfer.	3	3										
CO2	Analyze energy conversion and core flow distribution, reactor heat generation, temperature distributions in fuel elements and transfer.	2	2	2									
CO3	Explain multi-phase flow, convective boiling to reactor coolant channel process and radiative heat transfer	2	2	2									
CO4	Evaluate core thermal design, nuclear and thermal-hydraulic operational and accident transient sequences, and engineering aspects of nuclear reactor safety.	2	2	2									

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING						
Mapping	Corresponding Level of Matching	Justification				
CO1-PO1	3	In order to apply fundamentals of heat transfer mechanisms and fluid mechanics in fluids and analogies in solving various engineering problem related to process of energy transfer, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.				
CO1-PO2	3	In order to apply fundamentals of heat transfer mechanisms and fluid mechanics in fluids and analogies in solving various engineering problem related to process of energy transfer, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.				

CO2-PO1	2	In order to analyze energy conversion and core flow distributions, temperature distributions in fuel elements and trans of mathematics, natural science, engineering fundamentals a specialization to the solution of complex engineering problems	fer, the knowledge nd an engineering		
CO2-PO2	2	In order to analyze energy conversion and core flow distrib generation, temperature distributions in fuel elements and tran formulation, research literature and analysis of complex eng reaching substantiated conclusions using first principles of m sciences and engineering sciences are required.	sfer, identification, ineering problems		
CO2-PO3	2	In order to analyze energy conversion and core flow distrib generation, temperature distributions in fuel elements and trans design solutions for complex engineering problems and components or processes that meet specified needs with approp for public health and safety, cultural, societal, and environmen	fer, it is required to design systems, oriate consideration tal considerations.		
CO3-PO1	2	In order to explain multi-phase flow, convective boiling to reactor coolant channel process and radiative heat transfer, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.			
CO3-PO2	2	In order to explain multi-phase flow, convective boiling to reactor coolant channel process and radiative heat transfer, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.			
CO3-PO3	2	In order to explain multi-phase flow, convective boiling to reactor coolant channel process and radiative heat transfer, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.			
CO4-PO1	2	In order to evaluate core thermal design, nuclear and thermal-hydraulic operational and accident transient sequences, and engineering aspects of nuclear reactor safety, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.			
CO4-PO2	2	In order to evaluate core thermal design, nuclear and thermal-hy and accident transient sequences, and engineering aspects of nuclear identification, formulation, research literature and analysis of coproblems reaching substantiated conclusions using first princip mathematics, natural sciences and engineering sciences are required.	clear reactor safety, omplex engineering oles of uired.		
CO4-PO3	In order to evaluate core thermal design, nuclear and thermal-hydraulic operation and accident transient sequences, and engineering aspects of nuclear reactor safet it is required to design solutions for complex engineering problems and design				
TEACHING 1	LEARNING STRATE	EGY			
Teaching and l	Learning Activities		Engagement (hours)		
	Face-to-Face Learnin	ng	42		
	Lecture Practical / Tutorial / Studio				
		tered Learning			
	Self-Directed Learnin		0.4		
	Non-face-to- Revision	-face learning	84 21		
	IXEVISIOII		21		

Formal Assessment Continuous Assessment	2
Mid-Term Final Examination	1 3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics			
Week-1	Concept of thermal-hydraulics, objectives of nuclear reactor thermal hydraulics	Class Test		
Week-2	Fundamentals of heat transfer mechanisms and fluid mechanics in fluids and analogies	1, Final Exam		
Week-3	Energy and core flow distribution, Reactor heat generation and transfer			
Week-4	Radial and axial temperature distributions in fuel elements,			
Week-5	Applications of single-phase, two-phase flow and convective boiling to reactor coolant channel analysis	Class Test 2, Final		
Week-6	Core thermal design and safety analysis, Two-phase flow patterns	Exam		
Week-7	Critical heat flux, DNBR, AOOs,			
Week-8	Void coefficient, Radiative heat transfer	Mid		
Week-9	Thermal-hydraulic safety limits and conditions	Term, Final		
Week-10	Current research topics of the nuclear thermal hydraulics concerned with safe and effective heat removal from the reactor core for power production.	Exam		
Week-11	Analysis of operational and accident transient sequences			
Week-12	Nuclear and thermal hydraulic transient	Class Test 3, Final		
Week-13	Week-13 Engineering aspects of nuclear reactor safety			
Week-14	Review class			

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO4	C3, C5
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C3, C4
	Mid term	10%	CO3	C2
Final Examination		60%	CO1-CO4	C2-C5
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Neil E., and Mujid Kazimi. *Nuclear systems volume I: Thermal hydraulic fundamentals*, 2nd edition, Boca Raton, USA: CRC press, 2011.
- 2. Cengel Y.A. and Boles, M.A., *Thermodynamics: An Engineering Approach*, 8th edition, Europe: McGraw-Hill Education, 2014.
- 3. Cengel, Y. A. and Cimbala, J. M., *Fluid Mechanics: Fundamentals and Applications*, 3rd edition, United States: McGraw-Hill, 2010.

REFERENCE SITE

Level-3, Term-II

	COURSE INFORMATION											
Course Code Course Title	: NE 356 : Nuclear Reactor Thermal Hydraulio	Lecture Contact Hours Credit Hours										
	PRE-REQUISITE											
	NE 355											
	CURRICULUM STRUCTURE											
	Outcome Based Education (OBE)											
	SYNOPSIS/RATIONALE											
	This course is designed to provide a general introduction to heat transfer mechanisms and fluid mechanics in fluids and analogies in solving various engineering problem related to process of energy transfer.											
	OBJECTIVES											
	To verify practically the theories and concepts learned in NE 355.											
	LEARNING OUTCOMES											
	Upon completion of the course, the students will be able to											
	 Analyze energy conversion and core flow distribution, reactor heat generation, temperature distributions in fuel elements. Explain multi-phase flow, convective boiling to reactor coolant channel process and radiative heat transfer. 											
	COURSE OUTCOMES & GENER	RIC SKILLS										
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA K							
CO1	Analyze energy conversion and core flow distribution, reactor heat generation, temperature distributions in fuel elements.	PO2, PO3	C4	1	2 1	R, Q, T						

CO2	boiling	multi-phase flow, convective to reactor coolant channel and radiative heat transfer.	PO2	2, PC)4		C	5		3		3	4 , 5	R, N	ИТ, Т	
		mplex Problems, CA-Complex ASG – Assignment; Pr – Presentat													; Q –	,
	COUR	SE CONTENT														
	Demonstrates Investigation Determined Study of Study of Determined Demonstrates Investigation Invest	f heat exchanger. Stration of the law of partial pration of the effect of pressure ination of thermal conductivity f force convection heat transfer forced convection of fin/flat f heat transfer by radiation and ination of heat flow and surfactivation of film-wise condensation of the air effect in a contact.	e on cri cy of a re er in a plate/p d conv ce heat ation ar	tica meta circ pipe enti t tra nd n	al by ular bun on. nsfe	steatube dle.	ady s e. effic	state ient	at c	cons	tant				cient.	
	SKILL MAPPING (CO-PO MAPPING)															
	No.	Course Learning Outcome	e	1	2	P: 3	ROG		M O	UTC 7	COM 8	IES ((PO)	11	12]
	CO1	Analyze energy conversion core flow distribution, reactor generation, temper distributions in fuel elements.	r heat	•	3	3	•			,		,	10		12	

(3 – High, 2- Medium, 1-low)

Explain

coolant

CO₂

convective

multi-phase

boiling to

channel radiative heat transfer.

process

JUSTIFICATION FOR CO-PO MAPPING Corresponding **Mapping Justification Level of Matching** In order to analyze energy conversion and core flow distribution, reactor heat generation, temperature distributions in fuel elements, identification, formulation, 3 CO1-PO2 research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required. In order to analyze energy conversion and core flow distribution, reactor heat generation, temperature distributions in fuel elements, it is required to design CO1-PO3 3 solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations. In order to explain multi-phase flow, convective boiling to reactor coolant channel process and radiative heat transfer, identification, formulation, research literature 3 CO2-PO2 and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.

flow,

3

3

reactor

including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
--

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	28
Student-Centered Learning	-
Self-Directed Learning	
Preparation of Lab Reports	28
Preparation of Lab Test	20
Preparation of presentation	14
Preparation of Quiz	-
Engagement in Group Projects	-
Formal Assessment	-
Continuous Assessment	1
Final Quiz	1
Total	120

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks							
Week-1	Introduction								
Week-2	Study of heat exchanger								
Week-3	Demonstration of the law of partial pressures								
Week-4	Investigation of the effect of pressure on critical thermal flow	Mid-term							
Week-5	Determination of thermal conductivity of a metal by steady state method								
Week-6	Study of force convection heat transfer in a circular tube								
Week-7	Week-7 Mid-term								
Week-8	Study of forced convection of fin/flat plate/pipe bundle								
Week-9	Study of heat transfer by radiation and convention								
Week-10	Determination of heat flow and surface heat transfer coefficient at constant pressure								
Week-11	Demonstration of film-wise condensation and measurement of overall heat transfer coefficient	Final Exam							
Week-12	Investigation of the air effect in a condenser								
Week-13	Lab practice								
Week-14	Final examination								

	Components	Grading	CO	Blooms Taxonomy
	Class Participation + Attendance	5+5= 10%	CO1	C4
Continuous Assessment	Conduct of Lab Test	20%	CO1, CO2	C4, C5
(60%)	Report Writing	15%	CO1, CO2	C4, C5
	Mid term	15%	CO2	C4, C5
Final	Exam	30%	CO1, CO2	C4, C5
Evaluation (40%)	Viva Voce/ Presentation	10%	CO1, CO2	C4, C5
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Todreas, N.E. and Kazimi, M. S. *Nuclear Systems I Thermal Hydraulic Fundamentals*, Taylor & Francis, 2nd edition, 2011.
- 2. Cengel Y.A. and Boles, M.A., *Thermodynamics: An Engineering Approach*, 8th edition in S.I. units, McGrawHill Book Company, 2014.
- 3. Cengel, Y. A. and Cimbala, J. M. Fluid Mechanics: Fundamentals and Applications, McGraw-Hill, 2010.
- 4. Wakil, M. M. E.; Nuclear Energy Conversion.
- 5. El-Wakil, M.M., Nuclear Heat Transport, International Text Book, 1971.
- 6. Rust, J.H., Nuclear Power Plant Engineering, Haralson, 1979.

REFERENCE SITE

Level-3, Term-II

	COURSE INFORMATION									
Course Code Course Title	: NE 353 : Mechanics of Materials									
	PRE-REQUISITE									
	ME 253									
	CURRICULUM STRUCTURE									
	Outcome Based Education (OBE)									
	SYNOPSIS/RATIONALE									

This course introduces to the calculations concerned with the mechanical properties of materials as they relate to the strength and stability of structures and mechanical components, and the skills and knowledge required to develop analytical techniques used to solve a wide range of linear stress/strain problems. **OBJECTIVES** To know the basic concepts and principles, and perform calculations, relative to the strength and stability of structures and mechanical components. 2. To learn the characteristics and calculate the magnitude of combined stresses in individual members and complete structures. 3. To calculate the deflection at any point on a beam subjected to a combination of loads. 4. To illustrate science/engineering data graphically and interpret the role of such displays in data analysis. LEARNING OUTCOMES Upon completion of the course, the students will be able to 1. Define the concepts and principles, and perform calculations, relative to the strength and stability of structures and mechanical components. 2. Explain the characteristics and calculate the magnitude of combined stresses in individual members and complete structures. 3. Analyze various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress and calculate the deflection at any point on a beam subjected to a combination of loads. 4. Construct graphical displays of science/ engineering data and interpret the role of such

	COURSE OUTCOMES & GENE	RIC SKILLS							
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods		
CO1	Define the concepts and principles, and perform calculations, relative to the strength and stability of structures and mechanical components.	PO1	C1	1	1	1	T, Q, F		
CO2	Explain the characteristics and calculate the magnitude of combined stresses in individual members and complete structures.	PO2	C2, C5	2	1	2	ASG, F		
CO3	Analyze various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress and calculate the deflection at any point on a beam subjected to a combination of loads.	PO3	C4, C5	2	1	3	MT, F		
CO4	Construct graphical displays of science/ engineering data and interpret the role of such displays in data analysis.	PO3	C2, C6	2	2	4	T, F		
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)								

displays in data analysis.

COURSE CONTENT

Stress analysis: statically indeterminate axially loaded member, axially loaded member, thermal and centrifugal stresses; Stresses in thin and thick walled cylinders and spheres.

Beams: Shear force and bending moment diagrams; Various types of stresses in beams; Flexure formula; Deflection of beams: integration and area moment methods;

Torsion formula; Angle of twist; Modulus of rupture; Helical springs; Combined stresses: principal stress, Mohr's Circle; Columns: Euler's formula, intermediate column formulas, the Secant formula; Flexure formula of curved beams.

Introduction to experimental stress analysis techniques; Strain energy; Failure theories.

SKILL MAPPING (CO-PO MAPPING)

NT.	Committee Outcome		PF	COC	3R/	١M	JO	JTC	ON	AES	S (P	O)	
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Define the concepts and principles, and perform calculations, relative to the strength and stability of structures and mechanical components.	3											
CO2	Explain the characteristics and calculate the magnitude of combined stresses in individual members and complete structures.		3										
CO3	Analyze various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress and calculate the deflection at any point on a beam subjected to a combination of loads.			2									
CO4	Construct graphical displays of science/ engineering data and interpret the role of such displays in data analysis.			3									

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	In order to define the concepts and principles, and perform calculations, relative to the strength and stability of structures and mechanical components, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.
CO2-PO1	3	In order to explain the characteristics and calculate the magnitude of combined stresses in individual members and complete structures, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.
CO3-PO3	2	In order to analyze various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress and calculate the deflection at any point on a beam subjected to a combination of loads, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.

CO4-PO3	3	In order to construct graphical displays of science/ engineering d the role of such displays in data analysis, it is required to desi complex engineering problems and design systems, components of meet specified needs with appropriate consideration for public he cultural, societal, and environmental considerations.	gn solutions for or processes that			
TEACHING	LEARNING STRATI					
Teaching and	Learning Activities		Engagement (hours)			
		utorial / Studio atered Learning	42 - -			
	Revision	ng -face learning	84 21			
	Formal Assessment Continuous Mid-Term Final Exami		2 1 3			
	Total		153			
TEACHING	METHODOLOGY					
Lecture and D	viscussion, Co-operative	e and Collaborative Method, Problem Based Method				
COURSE SC	HEDULE					
Weeks		Topics	Remarks			
Week-1	_	ically indeterminate axially loaded member, axially loaded d centrifugal stresses (I)				
Week-2	Week-2 Stress analysis: statically indeterminate axially loaded member, axially loaded member, thermal and centrifugal stresses (II)					
Week-3	Week-3 Stress analysis: statically indeterminate axially loaded member, axially loaded member, thermal and centrifugal stresses (III)					
Week-4	Stresses in thin and t	hick walled cylinders and spheres				
Week-5	Week-5 Beams: Shear force and bending moment diagrams; various types of stresses in beams					
Week-6	Flexure formula; De	flection of beams: integration and area moment methods (I)	2, Final Exam			
Week-7	Flexure formula; Des	flection of beams: integration and area moment methods (II)				
Week-8	Torsion formula; An stresses: principal str	igle of twist; Modulus of rupture; Helical springs; Combined ress (I)	Mid			
Week-9	Torsion formula; An stresses: principal str	gle of twist; Modulus of rupture; Helical springs; Combined	Term, Final			
Week-10	Mohr's Circle (I)		Exam			
Week-11	Mohr's Circle (II)					
Week-12	Euler's formula, int formula of curved be	ermediate column formulas, the Secant formula; Flexure	Class Test			

Week-13	Euler's formula, intermediate column formulas, the Secant formula; Flexure formula of curved beams (II)	3, Final Exam
Week-14	Introduction to experimental stress analysis techniques; Strain energy; Failure theories	

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. W. Nash, Strength of materials, 6th edition, USA: Mcgraw-Hill International Editions, 2013.
- 2. Andrew Pytel, Ferdinand L. Singer, Strength of Materials, 4th edition, New York, USA: Harpercollins. 2009.
- 3. Ferdinand P. Beer, E. Russell Johnston Jr., *Mechanics of Materials*, 7th Edition.USA: McGraw-Hill Education, 2014.
- 4. E. P. Popov, Mechanics of Materials, Oxford, UK: Prentice-Hall, 1958.

REFERENCE	SIComponents	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C1, C2, C5, C6
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C1, C2, C5
	Mid term	10%	CO3	C4, C5
	Final Examination	60%	CO1-CO4	C1, C2, C4, C5, C6
	Total Marks	100%		

Level-3, Term-II

	COURSE INFORMATION									
Course Code Course Title	: NE 354 : Mechanics of Materials Sessional		ecture Contact I redit Hours	Hours		: 1.5 : 0.7				
	PRE-REQUISITE									
	NE 353									
	CURRICULUM STRUCTURE									
	Outcome Based Education (OBE)									
	SYNOPSIS/RATIONALE									
	This is the foundation unit in the study of structures. By applying the knowledge gained in Statics and combining it with the concepts gained in Materials Technology the students are introduced to fundamental theories and techniques required to analyze the state of stress and strain to meet strength, stiffness and stability requirements in structural members subjected to external loads.									
	OBJECTIVES									
	 To learn a basic knowledge of the statistical aspects of mechanics of materials. To understand the formal theory of solid mechanics: the equilibrium, kinematic, and constitutive equations. To introduce the atomistic mechanisms underlying the mechanical behavior of materials. To evaluate the process-structure-property-performance relationships in materials engineering. 									
	LEARNING OUTCOMES									
	 Upon completion of the course, the s Demonstrate the fundamentals of Construct graphical displays to its structural members subjected to deflection at any point on a bean 	f stresses and s nterpret the eng combined stres	trains. gineering data a			-				
	COURSE OUTCOMES & GENER	RIC SKILLS								
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods			
CO1	Demonstrate the fundamentals of stresses and strains.	PO1	C2	1	2	1	R, Q, T			
CO2	Construct graphical displays to interpret the engineering data as well as analyze various structural members subjected to combined stresses by Mohr's circle and calculate the deflection at any point on a beam.	ct graphical displays to the engineering data as well as various structural members d to combined stresses by circle and calculate the								
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)									

COURSE CONTENT

- 1. Stress analysis: statically indeterminate axially loaded member.
- 2. Stresses in thin and thick-walled cylinders and spheres.
- 3. Study of various types of stresses in beams.
- 4. Study of deflection of beams.
- 5. Study of Mohr's circle.
- 6. Experimental stress analysis techniques and failure theories.

SKILL MAPPING (CO-PO MAPPING)

Ma	Course Learning Outcome		PROGRAM OUTCOMES (PO)										
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Demonstrate the fundamentals of stresses and strains.	3											
CO2	Construct graphical displays to interpret the engineering data as well as analyze various structural members subjected to combined stresses by Mohr's circle and calculate the deflection at any point on a beam.		3		3								

^{(3 –} High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification							
CO1-PO1	3	The knowledge of mathematics, science and engineering drawing fundamentals is required to demonstrate the fundamentals of stresses and strains.							
CO2-PO2	3	Identification, formulation, research literature and analysis of complex engineering problems are required to construct graphical displays to interpret the engineering data as well as analyze various structural members subjected to combined stresses by Mohr's circle and calculate the deflection at any point on a beam.							
CO2-PO4	3	In order to construct graphical displays to interpret the engineering data as well as analyze various structural members subjected to combined stresses by Mohr's circle and calculate the deflection at any point on a beam, it is required to conduct investigations of complex problems using engineering drawing knowledge and methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.							

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	14
Practical / Tutorial / Studio	28
Student-Centered Learning	-
Self-Directed Learning	
Preparation of Lab Reports	14
Preparation of Lab Test	10
Preparation of presentation	9

Formal Assessment	
Continuous Assessment	14
Final Quiz	1
Total	90

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics						
Week-1	Stress analysis: statically indeterminate axially loaded member						
Week-2	Stresses in thin and thick walled cylinders and spheres						
Week-3	Study of various types of stresses in beams						
Week-4	Study of deflection of beams						
Week-5	Study of Mohr's circle						
Week-6	Experimental stress analysis techniques and failure theories						
Week-7	Final Exam						

ASSESSMENT STRATEGY

Con	Grading	CO	Blooms Taxonomy	
Class Participation/ Attendance		5+5= 10%	CO1	C2
Continuous	Conduct of Lab Test	20%	CO1, CO2	C2, C4, C6
Assessment (60%)	Report Writing	15%	CO1, CO2	C2, C4, C6
	Mid term	15%	CO2	C4, C6
Final Evaluation	Exam	30%	CO1, CO2	C2, C4, C6
(40%)	Viva Voce/ Presentation	10%	CO1, CO2	C2, C4, C6
Tot	al Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

1. *Strength of materials* (4th edition) William Nash, Publisher Mcgraw-hill International Editions, Schaum's Outline Series.

REFERENCE SITE

Level-3, Term-II

	COURSE INFORMATION										
Course Code Course Title	: GEEM 351 : Engineering Ethics and Moral Philo		ecture Contact I redit Hours	Hours	: 2.0 : 2.0						
	PRE-REQUISITE										
	None										
	CURRICULUM STRUCTURE										
	Outcome Based Education (OBE)										
	SYNOPSIS/RATIONALE										
	It is essential for professionals in any field to have an understanding of the ethical problems and principles in their field. But anyone, no matter what their job, must deal with many other professions as well. Part of professional ethics is the understanding of the ethics of other professions: how they interact and what can be expected from them as correct ethical behaviour. In turn, any professional will benefit from a critical scrutiny of their own ethics by those from other professions. The general principles of professional ethics will be examined, as well as the distinctive problems of the different fields. This course will help the nuclear engineering students to conceptualize the dynamics of the ethical practice in nuclear domain.										
	OBJECTIVES										
	 To inculcate the sense of social r To develop a firm ethical base. To make the students realize the 	-	f ethics in nucle	ear professio	onal en	vironment.					
	LEARNING OUTCOMES										
	 Upon completion of the course, the s Understand the theoretical aspec Identify practical and legal p professional field/industry. Develop foundation knowledge of the codes of engineering life. 	ts of ethics and roblems common to be a	d moral philosog monly encount applied in profe	ered by e	nginee ds.	rs in their					
	COURSE OUTCOMES & GENER	RIC SKILLS									
No.	Course Learning Outcome	Corresponding POs	g Bloom's Taxonomy	CP CA	KP	Assessment Methods					
CO1	Understand the theoretical aspects of ethics and moral philosophy in professional fields.	PO1	C2		1	T, Q, F					
CO2	Identify practical and legal problems commonly encountered by engineers in their professional field/industry.	PO2, PO6 C3		1	ASG, F						
CO3	Develop foundation knowledge of ethics to be applied in professional fields.										

CO4	Critical profession	onal conduc			PO1:	,			 C5					1		T, F	
	implicat life.	ions in nucle	ear engineering											-			
		(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)															
	COUR	COURSE CONTENT															
	Introduction to ethics, history, evolution, need and importance of ethics in nuclear engineering technology, ethical terminology; Introduction to the Engineering Ethics: purpose, objective scope, methods etc. Introduction to Philosophy of Engineering; Professional Engineering Code Codes of Ethics (IEB); Code of Ethics (BAERA & IAEA); Whistle Blowing; Ethical probles solving techniques; Case study methodology, different case studies; The Rights a Responsibilities of Engineers; Ethical Issues in Engineering Practice; Ethics Issues in Nuclear Energy Technology; Safety, Risk and Liability; Trust and reliability.										jective g Code proble hts ar	s, s, n					
	SKILL	SKILL MAPPING (CO-PO MAPPING)															
	N.T.						P	ROC	3RA	M (OUT	CON	1ES	(PO)			
	No.		Learning Outcome		1	2	3	4	5	6	7	8	9	10	11	12	
	CO1	of ethics and professional	I the theoretical aspects d moral philosophy in fields.		1												
	CO2	problems co	mmonly encount in their professi			2				3							
	CO3	ethics to be fields.	ndation knowleds applied in profess	ional								3					
	CO4	professional	assess the code conduct and in nuclear engine	their												1	
	(3 - Hig)	h, 2- Medium,	1-low)														
JUSTIFICAT			APPING														
Mapping		esponding of Matching					Jı	ustif	icat	ion							
CO1-PO1	20,010	3	In order to understand the theoretical aspects of ethics and moral philosophy in professional fields, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.						g								
CO2-PO2		2	In order to be able to identify practical and legal problems commonly encountered by engineers in their professional field/industry identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.														
CO2-PO6		3	In order to be able to identify practical and legal problems commonly encountered by engineers in their professional field/industry application of reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issue and the consequent responsibilities relevant to professional engineering practical and solutions to complex engineering problems is required.				ed s										

CO3-PO8	3	In order to develop foundation knowledge of ethics to be applied in professional fields, application of ethical principles and commit to professional ethics and
		responsibilities and norms of engineering practice is required.
CO4-PO12	1	In order to engage in lifelong learning through acquiring knowledge on legal and ethical aspects of professions of Nuclear Engineering, it is required to recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement
	(hours)
Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	56
Revision	14
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	104

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Introduction to ethics, history, evolution, need and importance of ethics in nuclear engineering technology, ethical terminology	Class Test
Week-2	Introduction to the Engineering Ethics: purpose, objectives, scope, methods etc.	1, Final Exam
Week-3	Introduction to Philosophy of Engineering	Exam
Week-4	Professional Engineering Codes, Codes of Ethics (IEB)	
Week-5	Code of Ethics (IAEA)	Class Test
Week-6	Code of Ethics (BAERA)	2, Final Exam
Week-7	Ethical Problem Solving Techniques	
Week-8	Whistle Blowing.	Mid
Week-9	Case study methodology, different case studies	Term, Final
Week-10	The Rights and Responsibilities of Engineers	Exam
Week-11	Ethical Issues in Engineering Practice	
Week-12	Ethics Issues in Nuclear Energy Technology	Class Test
Week-13	Safety, Risk and Liability	3, Final Exam
Week-14	Trust and reliability	

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C2, C3, C5
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C2, C3
	Mid term	10%	CO3	C6
	Final Examination	60%	CO1-CO4	C2, C3, C5, C6
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Charles E. Harris, et el. *Engineering Ethics: Concepts and Cases*, Cengage Learning Boston, USA: 4th Edition, 2009.
- 2. Charles B. Fleddermann, Engineering Ethics, 4th Edition, NewYork, USA: Mc-Grawhill: 2012.
- 3. Davis, M., ed. Engineering Ethics. Farnham, United Kingdom Ashgate Publishing Co, 2005.

REFERENCE SITE

Level-3, Term-II

COURSE INFO	DRMATION		
Course Code	: GERM 352	Lecture Contact Hours	: 4.00
Course Title	: Fundamentals of Research Methodology	Credit Hours	: 2.00

PRE-REQUISITE

Nil

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The Fundamentals of Research Methodology is a hands-on course designed to impart education in the foundational methods and techniques of academic research in Science and Engineering context. UG students would examine and be practically exposed to the main components of a research framework i.e., problem definition, research design, data collection, ethical issues in research, time management, report writing, and presentation. Once equipped with this knowledge, participants would be well-placed to conduct disciplined research under supervision in an area of their choosing. In addition to their application in an academic setting, many of the methodologies discussed in this course would be similar to those deployed in professional research environments.

OBJECTIVES

- 1. To evaluate/review related extant literature, form a variety of sources, pertinent to the research objectives/questions.
- 2. To expose students to various research methodologies (design), relevant to the research problem needing to be addressed.
- 3. To explain and justify how researchers will collect and analyze research data.
- 4. To educate students in the common mistakes, research misconduct, and ethical considerations in the field of research methodology.

LEARNING OUTCOMES

Upon completion of the course, the students will be able to

- 1. Understand the research fundamentals and formulate problem statement and research questions/objectives.
- 2. Formulate and compose a research proposal considering research activities/design, background studies, and following standard guidelines.
- 3. Develop writing and presentation skill, and demonstrate ethical considerations in conducting research.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Learning Outcome	Corresponding POS	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Understand the research fundamentals and formulate problem statement and research questions/objectives.	PO2	C2, C6	-			ASG, Q
CO2	Formulate and compose a research proposal considering research activities/design, background studies, and following standard guidelines.	PO3, PO12	C6	-			R, Pr, ASG, Q
CO3	Develop writing and presentation skill, and demonstrate ethical considerations in conducting research.	PO8, PO10	C2, C6	-			R, Pr, ASG

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam, MT- Mid Term Exam;

C1 – Remember, C2 – Understand, C3 – Apply, C4 – Analyze, C5 – Evaluate, and C6 – Create)

COURSE CONTENT

- 1. Foundations of Research: meaning of research; definitions of research; objectives of research; motivation in research; general characteristics of research; criteria of good research; types of research; concept of theory, empiricism, deductive and inductive theory; characteristics of scientific method.
- 2. Problem Identification and Formulation: meaning and need of review of literature; how to conduct the review of literature; research question investigation question measurement issues hypothesis qualities of a good hypothesis –Null hypothesis & Alternative hypothesis. Hypothesis testing logic & importance.
- 3. Research Design: concept and importance in research features of a good research design exploratory research design concept, types and uses, descriptive research designs concept, types and uses, experimental/computational design: concept of independent & dependent variables.
- 4. Data Analysis: Data Preparation Univariate Analysis (frequency tables, bar charts, pie charts, percentages), Bivariate Analysis Cross Tabulations and Chi-square test including testing hypothesis of association.
- 5. Research Misconduct and Ethics: understand the research misconduct; type of research misconduct; ethical issues in conducting research; ethical issues related to publishing, plagiarism and self-plagiarism.
- 6. Use of Tools / Techniques for Research: layout of a research paper; methods to search required information effectively; reference management software like Zotero/ Mendeley; software for paper formatting like LaTeX/MS Office; software for detection of Plagiarism, time management and developing Gantt Charts.

SKILL MAPPING

No.	Course Learning Outcome			I	PRO	GRA	МΟ	UTC	COM	ES (PO)		
NO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Understand the research fundamentals and												
CO1	formulate problem statement and research		3										
	questions/objectives.												
	Formulate and compose a Research proposal												
CO2	considering research activities, background			1									2
	studies, and following standard guidelines.												
	Develop writing and presentation skill, and												
CO3	demonstrate ethical considerations in								1		3		
	conducting research.												

^{(3 –} High, 2- Medium, 1-low)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	48
Lecture	24
Practical / Tutorial / Studio	12
Student-Centered Learning	12
Self-Directed Learning	30
Non-face-to-face learning	12
Report Preparation	18
Formal Assessment	
Continuous Assessment	3
Report Submission (2)	-
Presentation (2)	1
Total	160

TEACHING METHODOLOGY

Lecture and Discussion, Mini-Seminars by Experts, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Week	Topics	Assessment
1	Foundations of Research: Meaning of Research; Definitions of Research; Objectives of Research; Motivation in Research; General Characteristics of Research; Criteria of Good Research; Types of Research; Concept of theory, empiricism, deductive and inductive theory; Characteristics of scientific method	
2	Practice session on Foundations of Research	Continuous
3	Problem Identification & Formulation: Meaning & need of Review of Literature; How to Conduct the Review of literature; Research Question – Investigation Question – Measurement Issues – Hypothesis – Qualities of a good Hypothesis –Null Hypothesis & Alternative Hypothesis. Hypothesis Testing – Logic & Importance.	Assessment (presentation/ quiz/other assignment)
4	Practice session on Problem Identification & Formulation	
5	Research Design: Concept and Importance in Research – Features of a good research design – Exploratory Research Design – concept, types and uses, Descriptive Research Designs –	Assignment 1

PO1 – Engineering knowledge, PO2 – Problem analysis, PO3 – Design/development of solutions, PO4 - Investigation, PO5 – Modern tool usage, PO6 – Engineer and society, PO7 – Environment and sustainability, PO8 - Ethics, PO9 – Individual and teamwork, PO10 - Communication, PO11 – Project management and finance, PO12 – Life-long learning

	concept, types and uses. Experimental Design: Concept of Independent & Dependent variables	Assignment has to provide
6	Practice session on Research Design	before, here students will
7	Data Analysis: Data Preparation – Univariate analysis (frequency tables, bar charts, pie charts, percentages), Bivariate analysis – Cross tabulations and Chi-square test including testing hypothesis of association	submit report and give PPT
8	Practice session on Data Analysis	
9	Research Misconduct and Ethics: Understand the research misconduct; type of research misconduct; Ethical issues in conducting research; Ethical issues related to publishing, Plagiarism and Self-Plagiarism	
10	Practice session on Research misconduct and Ethics	Continuous
11	Use of Tools / Techniques for Research: Layout of a Research Paper; Methods to search required information effectively; Reference Management Software like Zotero/ Mendeley; Software for paper formatting like LaTeX/MS Office; Software for detection of Plagiarism. Time management and developing Gantt Charts	Assessment (presentation/ quiz/other assignment)
12	Practice session on Use of tools/ techniques for Research	assignment)
13	Review Session (Theory) – I/ Final Presentation	Assignment 2
14	Review Session (Practice) – II/ Final Presentation	Assignment has to provide before, here students will submit report and give PPT

Assessment Crite	eria	CO	Dia ama Tawanama
Components	Grading	CO	Blooms Taxonomy
Assignment I	20%	CO1, CO3	C2, C6
Assignment II	50%	CO2, CO3	C2, C6
Continuous Assessment	30%	CO1, CO2	C2,C6
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Deb, Dipankar, Rajeeb Dey, and Valentina E. Balas. *Engineering research methodology: a practical insight for researchers*.1 edition, Singapore: Springer, 2018.
- 2. David V. Thiel, Research Methods for Engineers, 1st Edition, UK: Cambridge University Press, 2014.
- 3. Flick. *Introducing research methodology: A beginner's guide to doing a research project*, 2nd edition New York, USA:Sage Publications Ltd;, 2015.
- 4. Blessing, Lucienne TM, and Amaresh Chakrabarti. *DRM: A design reseach methodology*, London, UK: Springer-Verlag, 2009.
- 5. Wolske, Martin. Research Methods: Information, systems and contexts, *The Journal of Community Informatics*, Mornington, Australia: Tilde University Press, 2013.
- 6. Dillman, Don A., Jolene D. Smyth, and Leah Melani Christian. *Internet, phone, mail, and mixed-mode surveys: the tailored design method*, New Jarsey, United States: John Wiley & Sons, 2014.

REFERENCE SITE

Level-4, Term-I and Term-II

	COURSE INFORMATION		
Course Code Course Title	: NE 400 : Final Year Design and Research Project	Lecture Contact Hours Credit Hours	: 12.00 : 6.00
	PRE-REQUISITE		
	None		
	CURRICULUM STRUCTURE		
	Outcome Based Education (OBE)		
	SYNOPSIS/RATIONALE		
	This course motivates to go neck-deep in res something in a different way after going throu suggested solutions to problems in relation temphasis to gather knowledge on a specific to Apart from these, this course will also introduct their ideas.	gh all of it. It provides description practical nuclear engineering pic and to relate theory to empire	ions, analyzes and g problem. It will rical observations.
	OBJECTIVES		
	 To learn more in-depth knowledge of the m into current research and development word. To study, analyze and provide solutions for To contribute to research and development To use a holistic view to critically, indepen with complex issues. To plan and use adequate methods to conevaluate this work. To create, analyze and critically evaluate di To critically and systematically integrate kr To learn about the research methodology as 	the problems related to Nuclear I work. dently and creatively identify, for duct qualified tasks in given from technical/architectural solutions are the solutions.	Engineering. ormulate and deal rameworks and to lutions.
	LEARNING OUTCOMES		
	 Upon completion of the course, the students will Ability to conduct literature review to judevelopment of coherent methodology usin field data, etc. Ability to analyze scenario and compose the project along with time-cost estimati Ability to formulate research methodolog benchmarked against standard practices go life problem. Ability to communicate through clear research performs verbal presentation along with visite to the students of the students will be added to the students of the students of the students will be added to the students of the stude	astify the importance of research ag standard references including the problem statements and the reson and ethical values. y incorporating clear fundament werning the research project which arch writing conform to standard	journals, policies, esearch objectives atals, theories and ch incorporate real

	COUR	SE OUTCOMES & GENER	IC SKILLS									
No.	C	ourse Learning Outcome	Correspondi ng POs	Blooi Taxon		CF	,	CA	K	Р		sessme Aethod
CO1	importar developi using s	t literature review to justify the nee of research and to support ment of coherent methodology standard references including policies, field data, etc.	PO4, PO5	C1-C4	, A2	1		1		1		PR, R
CO2	problem objective	e scenario and compose the statements and the research es of the project along with st estimation and ethical values.	PO2, PO6, PO8	C1, C C5, A3 P1	, A4,	3		2		l, ,4		Pr, R
CO3	standard	rating clear fundamentals, and benchmarked against practices governing the project which incorporate real	PO1, PO3, PO7, PO9, PO12	C3-C6 P5		2		3	1,	2, 5		Pr, R
CO4	writing, format a	conform to standard thesis and verbal presentation along libility of the proposed system.	PO7, PO10	C4, C A5,		7		5	1	,8		PR, R
		mplex Problems, CA-Complex A										ct ; Q –
	Quiz; As	mplex Problems, CA-Complex A SG – Assignment; Pr – Presentati										ct ; Q –
	Quiz; As	SG – Assignment; Pr – Presentati	on; R - Report;	F – Fina	l Exa	m, M						et ; Q -
	Quiz; As COURS Student	SG – Assignment; Pr – Presentati SE CONTENT	on; R - Report;	F – Fina	l Exa	m, M						et ; Q –
	Quiz; As COURS Student SKILL	SG – Assignment; Pr – Presentati SE CONTENT s may choose to write alone or MAPPING (CO-PO MAPP)	on; R - Report; r in groups of t	F – Fina	l Exa	m, M	Т- М	Aid T	Cern	n Exa	am)	
	Quiz; As COURS Student	SG – Assignment; Pr – Presentati SE CONTENT s may choose to write alone or MAPPING (CO-PO MAPP) Course Learning C	on; R - Report; r in groups of t ING)	F – Fina	l Exa	m, M	AM (Aid T	CO	MES	am)	
	Quiz; As COURS Student SKILL	SG – Assignment; Pr – Presentation SE CONTENT Is may choose to write alone or MAPPING (CO-PO MAPP) Course Learning Conduct literature review to just of research and to support development of the conduct of the co	on; R - Report; r in groups of to ING) Outcome Istify the imported popment of cohereferences includes	F – Fina	l Exa	nts.	AM (Aid T	CO	MES	am)	0)
	Quiz; As COURS Student SKILL No.	SE CONTENT s may choose to write alone or MAPPING (CO-PO MAPP) Course Learning C Conduct literature review to ju of research and to support deve methodology using standard in journals, policies, field data, etc Analyze scenario and comp statements and the research obje along with time-cost estimation	on; R - Report; r in groups of the importance of the probectives of the production and ethical value.	tance erent uding lem oject ues.	l Exa	nts.	Т- N	Aid T	CCO 7	MES	am)	0)
	Quiz; As COURS Student SKILL No. CO1	SE CONTENT s may choose to write alone or MAPPING (CO-PO MAPP) Course Learning C Conduct literature review to jute of research and to support deverties and to support deverties and the research object of the composite of th	on; R - Report; r in groups of to ING) Outcome Istify the import elopment of cohereferences included income and ethical valued logy incorporal and benchmar erning the rese	ap to 3 stance erent iding lem oject les. ting ked	PRO 2 3	nts.	Т- N	OUT 6	CCO 7	MES	3 (PC 10	0)
	Quiz; As COURS Student SKILL No. CO1 CO2 CO3	SE CONTENT s may choose to write alone or MAPPING (CO-PO MAPP) Course Learning C Conduct literature review to juture of research and to support dever methodology using standard a journals, policies, field data, etc. Analyze scenario and comp statements and the research objealong with time-cost estimation Formulate research methodo clear fundamentals, theories	on; R - Report; r in groups of u ING) Outcome astify the imporelopment of cohreferences included by the productives of the productive in the	tance erent uding lem oject ues. ting ked arch	PRO 2 3	nts.	Т- N	OUT 6 2	CCO 7	MESS 9	3 (PC 10	0) 11 12

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO4	3	In order to conduct literature review to justify the importance of research and to support development of coherent methodology using standard references including journals, policies, field data, etc., it is required to conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
CO1-PO5	2	In order to conduct literature review to justify the importance of research and to support development of coherent methodology using standard references including journals, policies, field data, etc., it is required to create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations.
CO2-PO2	3	In order to analyze scenario and compose the problem statements and the research objectives of the project along with time-cost estimation and ethical values, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO2-PO6	2	In order to analyze scenario and compose the problem statements and the research objectives of the project along with time-cost estimation and ethical values, application of reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems is required.
CO2-PO8	3	In order to analyze scenario and compose the problem statements and the research objectives of the project along with time-cost estimation and ethical values, application of ethical principles and commit to professional ethics and responsibilities and norms of engineering practice is required.
CO3-PO1	3	In order to formulate research methodology incorporating clear fundamentals, theories and benchmarked against standard practices governing the research project which incorporate real life problem, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.
CO3-PO3	3	In order to formulate research methodology incorporating clear fundamentals, theories and benchmarked against standard practices governing the research project which incorporate real life problem, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
CO3-PO7	2	In order to formulate research methodology incorporating clear fundamentals, theories and benchmarked against standard practices governing the research project which incorporate real life problem, it is required to understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts.
CO3-PO9	1	In order to formulate research methodology incorporating clear fundamentals, theories and benchmarked against standard practices governing the research project which incorporate real life problem, it is needed to function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
CO3-PO12	2	In order to formulate research methodology incorporating clear fundamentals, theories and benchmarked against standard practices governing the research project which incorporate real life problem, it is required to recognize the need

		for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
CO4-PO7	3	In order to communicate through clear research writing conform to standard thesis format and performs verbal presentation along with visibility of the proposed system, it is required to understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts.
CO4-PO10	3	In order to communicate through clear research writing conform to standard thesis format and performs verbal presentation along with visibility of the proposed system, it is required to communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning Lecture Practical / Tutorial / Studio Student-Centered Learning	84
Self-Directed Learning Non-face-to-face learning Revision	42
Formal Assessment Continuous Assessment Research project Report	84 42
Mid-Term Final Presentation Total	1 253

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Activities	Log Book	Remarks
Week-1	Discussion with students, Topics selection (I)	-	
Week-2	Discussion with students, Topics selection (II)	-	
Week-3	Analysis selected topics	Introduction section (Chapter 1)	
Week-4	Review of Literature (I)	Writing literature review (Chapter 2)	
Week-5	Review of Literature (II)	Writing literature review (Chapter 2)	
Week-6	Work on methodology section	Startingof methodology section (Chapter 3)	
Week-7	Presentation on proposed research work	Sample report	

Week-8	Work on Proposal and Presentation covering Introduction, Literature Review, Methodology	Related update
Week-9	Related data collection, data analysis (I)	Include analyzed result, result and discussion
Week-10	Related data collection, data analysis (II)	Include analyzed result, result and discussion
Week-11	Related data collection, data analysis (III)	Include analyzed result, result and discussion
Week-12	Final update on proposed work	Submission of Draft Research Proposal to Supervisor
Week-13	Research proposal and report evaluation considering rubrics	Submission of Final Research Proposal
Week-14	Proposal Defence (Oral) Evaluation	-

Evaluator	Component	Grading (%)	Total (%)	CO	Bloom Taxonomy
	Problem statement and Research objective report	20		CO1	C1-C4, A2
Supervisor	Literature review report	30	60	CO2	C1, C3-C5, A3, A4, P1
	Methodology report	10		CO3	C3-C6, A4, P5
	Duanasal nament	20		CO1	C1-C4, A2
Internal	Proposal report	20	35	CO4	C4, C6, A5, P7
Examiner	Proposal presentation	15	33	CO2	C1, C3-C5, A3, A4, P1
		13		CO3	C3-C6, A4, P5
Coordinator	Log book	5	5	CO4	C4, C6, A5, P7
Total Marks		100	100		

 $(CO = Course\ Outcome,\ C = Cognitive\ Domain,\ P = Psychomotor\ Domain,\ A = Affective\ Domain)$

REFERENCE BOOKS

N/A

REFERENCE SITE

Level-4, Term-I

	COURSE INFORMATION		
Course Code Course Title	: NE 409 : Nuclear Fuel Cycle and Radioactive Waste Management	Lecture Contact Hours Credit Hours	: 3.00 : 3.00
	PRE-REQUISITE		
	None		

	CURRICULUM STRUCTURE							
	Outcome Based Education (OBE)							
	SYNOPSIS/RATIONALE							
	This course is designed to provide a general introduction to the various opportunities in the emerging field of nuclear fuel system and the classification of radioactive waste and its conditioning and disposal management.							
	OBJECTIVES							
	 To understand the process of Uranium mining, milling, conversions, enrichment and fuel fabrication techniques. To acquiring the skill of fuel designing, fuel performance analysis, burn-up analysis and spent fuel reprocessing methods. To understand the classification of radioactive waste and its conditioning and develop safety cases and assessments for repositories. To acquire the knowledge of different waste treatment procedures and demonstrate both environmental and radiological safety in case of radioactive waste disposals. 							
	LEARNING OUTCOMES							
	 Upon completion of the course, the students will be able to Understand the various opportunities in the emerging field of nuclear fuel system and the classification of radioactive waste and its conditioning and disposal management. Explain the fundamentals of Uranium mining, milling, conversions, enrichment and fue fabrication techniques. Analyze the classifications of radioactive waste and its conditioning and develop safety cases and assessments for repositories. Evaluate the fuel design and performance analysis and demonstrate both environmental and radiological safety in case of radioactive waste disposals to save environment 							
	COURSE OUTCOMES & GENER	RIC SKILLS						
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods	
CO1	Understand the various opportunities in the emerging field of nuclear fuel system and the classification of radioactive waste and its conditioning and disposal management.	PO1, PO2	C2	-	-	1	T, Q, F	
CO2	Explain the fundamentals of Uranium mining, milling, conversions, enrichment and fuel fabrication techniques.	, DO2 C4 3 ASC E						
CO3	Analyze the classifications of radioactive waste and its conditioning and develop safety cases and assessments for repositories.	PO3 C4 - 3 MT. F						
CO4	Evaluate the fuel design and performance analysis and demonstrate both environmental and radiological safety in case of radioactive waste disposals to save environment	e PO7 C5 - 5 T, F						

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

An overview of the fuel cycle, different fuels and fuel utilization, mining of uranium, Heap leaching, In Situ leaching, milling of uranium, solvent extraction of uranium, purification and conversion to UF6, Uranium enrichment: gaseous diffusion, uranium enrichment: centrifuge enrichment, laser isotope separation process, Separative Work Unit SW, Analysis of SWU, Fuel Rod and Assembly Design properties of irradiated fuel, Spent fuel management, nuclear fuel reprocessing, fusion fuel cycle, fuel cycle economy.

Radioactive waste definition and classification, LLW, ILW and HLW, principles to manage radioactive waste, Wastes from the 'front end' and 'back end' of the fuel cycle, decommissioning waste, transuranic waste, different separation techniques of nuclear wastes, purex process, conversion of radioactive wastes, decontamination of radioactive element, treatment process of gaseous, aqueous and solid wastes, Conditioning process of HLW, ILW, LLW, spent fuels treatment and conditioning processes - incineration, compaction, cementation, bituminization, calcination, spent fuels treatment and conditioning processes - vitrification, synroc and composite waste forms, Composite waste forms, glass-ceramic composites, engineered encapsulation, transportation and storage systems of nuclear waste, Different disposal techniques, shallow disposal, deep disposal, dry cask storage, Spent fuel pool, policy, governance, social and political issues, environmental impact assessment.

SKILL MAPPING (CO-PO MAPPING)

No.	Course Learning Outcome]	PRO	GR	AM (OUT	COM	IES (PO)		
NO.	o. Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	1
CO1	Understand the various opportunities in the emerging field of nuclear fuel system and the classification of radioactive waste and its conditioning and disposal management.	2	3										
CO2	Explain the fundamentals of Uranium mining, milling, conversions, enrichment and fuel fabrication techniques.		3										
CO3	Analyze the classifications of radioactive waste and its conditioning and develop safety cases and assessments for repositories.			3									
CO4	Evaluate the fuel design and performance analysis and demonstrate both environmental and radiological safety in case of radioactive waste disposals to save environment							2					

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	2	In order to understand the various opportunities in the emerging field of nuclear fuel system and the classification of radioactive waste and its conditioning and disposal management, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.
CO1-PO2	3	In order to understand the various opportunities in the emerging field of nuclear fuel system and the classification of radioactive waste and its conditioning and disposal management, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO2-PO2	3	In order to explain the fundamentals of Uranium mining, milling, conversions, enrichment and fuel fabrication techniques, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO3-PO3	3	In order to analyze the classifications of radioactive waste and its conditioning and develop safety cases and assessments for repositories, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
CO4-PO7	2	In order to evaluate the fuel design and performance analysis and demonstrate both environmental and radiological safety in case of radioactive waste disposals, it is required to conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics			
Week-1	An overview of the fuel cycle, different fuels and fuel utilization, mining of			
WEEK-1	uranium, Heap leaching			

Week-2 Week-3	In Situ leaching, milling of uranium, solvent extraction of uranium, purification and conversion to UF6 Uranium enrichment: gaseous diffusion, uranium enrichment: centrifuge enrichment, laser isotope separation process, Separative Work Unit (SWU)	Class Test 1, Final Exam		
Week-4	Analysis of SWU, Fuel Rod And Assembly Design-1, Fuel Rod And Assembly Design-2			
Week-5	In core fuel management, Fuel Management And Fuel Reload Pattern -1, Fuel Management And Fuel Reload Pattern -2			
Week-6	Fuel Burn-up Calculation -1, Fuel Burn-up Calculation-2, properties of irradiated fuel			
Week-7	Spent fuel management, nuclear fuel reprocessing, fusion fuel cycle, fuel cycle economy			
Week-8	Radioactive waste definition and classification, LLW, ILW and HLW, principles to manage radioactive waste			
Week-9	Wastes from the 'front end' and 'back end' of the fuel cycle, decommissioning waste, transuranic waste, different separation techniques of nuclear wastes			
Week-10	The purex process, conversion of radioactive wastes, decontamination of radioactive element, treatment process of gaseous, aqueous and solid wastes			
Week-11	Conditioning process of HLW, ILW, LLW, spent fuels treatment and conditioning processes - incineration, compaction, cementation, bituminization, calcination, spent fuels treatment and conditioning processes - vitrification, synroc and composite waste forms	Class Test		
Week-12	Composite waste forms, glass-ceramic composites, engineered encapsulation, transportation and storage systems of nuclear waste			
Week-13	Different disposal techniques, shallow disposal, deep disposal, dry cask storage			
Week-14	Spent fuel pool, policy, governance, social and political issues, environmental impact assessment			

Components		Grading	CO	Blooms Taxonomy		
Continuous Assessmen t (40%)	Class Test/ Assignment (1-3)	20% CO1, CO2, CO4		C2, C4, C5		
	Class Participation	5%+ 5% (Attnd)	CO1, CO2	C2, C4		
	Mid term	15%	CO3	C4		
Final Examination		60%	CO1,CO2,CO3,CO4	C2, C4, C5		
Total Marks		100%				

 $(CO = Course\ Outcome,\ C = Cognitive\ Domain,\ P = Psychomotor\ Domain,\ A = Affective\ Domain)$

REFERENCE BOOKS

- 1. P. D. Wilsion, The nuclear fuel cycle from ore to waste, oxford science publications, Oct 1997
- 2. INTERNATIONAL ATOMIC ENERGY AGENCY, Radioactive Waste Management: An IAEA Source Book, IAEA, 1992
- 3. OECD/NEA, *Advanced Nuclear Fuel Cycles and Radioactive Waste Management*, Nuclear Development, OECD Publishing, 2006
- 4. D. R. Wily, The chemistry of nuclear fuel waste deposal, Polytechnic International Press, 2002
- 5. R. E. Masterson, Nuclear Engineering Fundamentals: A Practical Perspective, 2nd ed., CRC Press, 2017

REFERENCE SITE

Level-4 Term-I

	COURSE INFORMATION						
Course Code Course Title	: NE 410 : Nuclear Fuel Cycle and Radioactive Waste	Lecture Contact Hours Credit Hours	: 2.0 : 1.0				
	Management Sessional	Credit Hours	. 1.0				
	PRE-REQUISITE						
	None						
	CURRICULUM STRUCTURE Outcome Based Education (OBE)						
	SYNOPSIS/RATIONALE						
	This course is designed to provide a general introduction to the various opportunities in the emerging field of nuclear fuel system and the classification of radioactive waste and its conditioning and disposal management.						
	OBJECTIVES						
	 To understand the process of Uranium mining, milling, conversions, enrichment and fuel fabrication techniques. To acquiring the skill of fuel designing, fuel performance analysis, burn-up analysis and spent fuel reprocessing methods. To understand the classification of radioactive waste and its conditioning and develop safety cases and assessments for repositories. To acquire the knowledge of different waste treatment procedures and demonstrate both environmental and radiological safety in case of radioactive waste disposals. LEARNING OUTCOMES						
	 Upon completion of the course, the students will be able to Understand the various opportunities in the emerging field of nuclear fuel system and the classification of radioactive waste and its conditioning and disposal management. Explain the fundamentals of Uranium mining, milling, conversions, enrichment and fuel fabrication techniques. Analyze the classifications of radioactive waste and its conditioning and develop safety cases and assessments for repositories. Evaluate the fuel design and performance analysis and demonstrate both environmental and radiological safety in case of radioactive waste disposals to save environment COURSE OUTCOMES & GENERIC SKILLS 						

No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
COI	Understand the various opportunities in the emerging field of nuclear fuel system and the classification of radioactive waste and its conditioning and disposal management.	PO1, PO2	C2	-	-	1	T, Q, F
CO2	Explain the fundamentals of Uranium mining, milling, conversions, enrichment and fuel fabrication techniques.	PO2	C4	-	-	3	ASG, F
CO3	Analyze the classifications of radioactive waste and its conditioning and develop safety cases and assessments for repositories.	PO3	C4	-	-	3	MT, F
CO4	Evaluate the fuel design and performance analysis and demonstrate both environmental and radiological safety in case of radioactive waste disposals to save environment	РО7	C5	-	-	5	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; Pr-Presentation; R-Report; F-Final Exam, MT-Mid Term Exam, OE-Online Exam)

COURSE CONTENT
Sessional based on theory course.
2. Thermal analysis of transportation cask.
3. Cask design and safety analysis by software code.
4. Modelling and simulation of waste management scenario.
SKILL MADDING (CO DO MADDING)

N-	No. Course Learning Outcome				PROGRAM OUTCOMES (PO)								
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Apply knowledge of nuclear fuel cycle to find roadmap to solve problems.	3											
CO2	Apply knowledge of different radioactive waste management procedures to solve radioactive waste management issue.		3										
CO3	Apply practical knowledge to understand the radiological safety in case of radioactive waste transport and disposals to save environment.						3						

(3 – High, 2- Medium, 1-low)

JUSTIFICATION	JUSTIFICATION FOR CO-PO MAPPING								
Mapping	Corresponding Level of Matching	Justification							
CO1-PO1	3	In order to apply knowledge of nuclear fuel cycle, the fundamentals of Uranium mining, milling, conversions, enrichment and fuel fabrication techniques, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.							
CO2-PO2	3	In order to apply knowledge of different radioactive waste management procedures, the classification of radioactive waste and its conditioning and disposal management, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.							
CO3-PO6	3	In order to apply practical knowledge to understand the radiological safety in case of radioactive waste disposals, evaluation of the fuel design and performance analysis and demonstrate both environmental and radiological safety in case of radioactive waste disposals, it is required to conduct investigations of complex problems using research-based knowledge.							

TEACHING LEARNING STRATEGY Engagement **Teaching and Learning Activities** (hours)

Face-to-Face Learning	
Lecture	21
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Sessional based on theory course.	
Week-2	Sessional based on theory course.	Evaluation 1
Week-3	Sessional based on theory course.	
Week-4	Thermal analysis of transportation cask.	Evaluation 2
Week-5	Cask design and safety analysis by software code.	
Week-6	Modelling and simulation of waste management scenario	Evaluation 3
Week-7	Final exam	

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Lab performance and Report	10%		
Assessment	Online-1	50%	CO1, CO2	C3, A2
(40%)	Class Evaluation	20%	CO2	C3, A2
	Lab Quiz		CO1, CO2	C3, A2
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. P. D. Wilsion, The nuclear fuel cycle from ore to waste, oxford science publications, Oct 1997
- 2. INTERNATIONAL ATOMIC ENERGY AGENCY, Radioactive Waste Management: An IAEA Source Book, IAEA, 1992
- 3. OECD/NEA, Advanced Nuclear Fuel Cycles and Radioactive Waste Management, Nuclear Development, OECD Publishing, 2006
- 4. D. R. Wily, The chemistry of nuclear fuel waste deposal, Polytechnic International Press, 2002
- 5. R. E. Masterson, Nuclear Engineering Fundamentals: A Practical Perspective, 2nd ed., CRC Press, 2017

REFERENCE SITE

Level-4, Term-II

	COURSE INFORMATION							
Course Code Course Title	: NE 415 : Radiation Interactions, Shielding and Protection	Lecture Contact Hours Credit Hours	: 2.00 : 2.00					
	PRE-REQUISITE							
	NE 301							
	CURRICULUM STRUCTURE							
	Outcome Based Education (OBE)							
	SYNOPSIS/RATIONALE							
	This course is designed to learn and familiarize about the radiation interaction with matter as well as special techniques and simulation methods for shielding analysis. OBJECTIVES							
	 To understand the fundamentals of radiation shielding in radiation fields and sources review of particle interactions. To know the Monte Carlo simulation for shielding analysis and basic methods for radiation dose calculations. To identify various techniques for photons and neutrons. To evaluate transport solutions: straight-ahead approximation, discrete ordinates, method of moments; albedos and duct penetration methods. 							
	LEARNING OUTCOMES							
	 Upon completion of the course, the students will be able Apply fundamentals of radiation shielding in radiation interactions. Analyze the common radiation sources encountered simulation for shielding analysis. Explain build-up factors, extending point kernel tech codes, medical facility shielding for photons and difful distributions. Evaluate transport solutions: straight-ahead approx moments; albedos and duct penetration methods; sky 	on fields and sources revie ed in shield design and laniques to include build-up ferent techniques for neutrination, discrete ordinate	Monte Carlo p point kernel ron.					

	COURSE OUTCOMES & GENERIC SKILLS								
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods		
CO1	Apply fundamentals of radiation shielding in radiation fields and sources review of particle interactions.	PO1	C3	-	-	-	T, F		

CO2	encounte	the common radiation sources ered in shield design and Carlo simulation for shielding	PO3	3		C-	4	-		-	1	Q,	ASG,
CO3	Explain point k build-up facility	build-up factors, extending ernel techniques to include point kernel codes, medical shielding for photons and techniques for neutron.	PO2	2		C:	5	-		-	2	1	MT, F
CO4	ahead ordinate	e transport solutions: straight- approximation, discrete s, method of moments; albedos penetration methods; skyshine catter.	PO2	2		C:	5	-		-	3		T, F
		mplex Problems, CA-Complex A SG – Assignment; Pr – Presentat											t ; Q –
	COUR	SE CONTENT											
	techniques for photons: buildup factors, extending point kernel techniques to include buildup kernel codes, special techniques for neutrons transport solutions: straight-ahead approxim method of moments, discrete ordinates, albedos and duct penetration methods; skyshine ar scatter, medical facility shielding, Shielding Design Considerations for Space Applica Emerging Technologies in Radiation Shielding and Protection, Reactor shielding desolvations												
	method o	of moments, discrete ordinate medical facility shielding, S g Technologies in Radiation	es, albedo Shielding	trans os an Des	sport d du sign	solu ict pe Con	itions enetra sidera	: stra ation	aight met s fo	t-ahe hods or Sj	ead a _l s; sky pace	oprox shine Appl	ximati e and licatio
	method of scatter, in Emerging calculation	of moments, discrete ordinate medical facility shielding, S g Technologies in Radiation	es, albedo Shielding on Shiel	trans os an Des	sport d du sign	solu ict pe Con	itions enetra sidera	: stra ation	aight met s fo	t-ahe hods or Sj	ead a _l s; sky pace	oprox shine Appl	ximati e and licatio
	method of scatter, in Emerging calculation	of moments, discrete ordinate medical facility shielding, so g Technologies in Radiations. MAPPING (CO-PO MAPPING)	es, albedo Shielding on Shield PING)	trans os an Des ding	sport d du sign and	solu Con Con l Pro	enetra sidera otecti	: stration ation on,	met met s fo Rea	t-ahe hods or S ₁ ctor	ead aps; skypace shie	oprox shine Appl lding	ximati e and licatio g des
	method of scatter, in Emerging calculation SKILL	of moments, discrete ordinate medical facility shielding, so grechnologies in Radiations. MAPPING (CO-PO MAPPING) Course Learning Outcome Apply fundamentals of radia shielding in radiation fields	es, albedo Shielding on Shielding PING)	trans os an Des	sport d du sign and	solu Con Con l Pro	ations enetra sidera otecti	: stration ation on,	met met s fo Rea	t-ahe hods or Sp ctor	ead ags; sky	oprox shine Appl	ximati e and licatio
	method of scatter, in Emerging calculation SKILL No.	of moments, discrete ordinate medical facility shielding, S g Technologies in Radiations. MAPPING (CO-PO MAPPING) Course Learning Outcome Apply fundamentals of radial shielding in radiation fields sources review of parinteractions. Analyze the common radial sources encountered in sidesign and Monte Carlo simulation for shielding analysis.	PING) ation and rticle ation hield ation	trans os an Des ding	sport d du sign and	solu Ict pe Con l Pre	enetra sidera otecti	: stration ation on,	met met s fo Rea	t-ahe hods or S ₁ ctor	ead aps; skypace shie	shing Appl Iding	ximati e and licatio g des
	method of scatter, in Emerging calculation SKILL No.	course Learning Outcome Apply fundamentals of radishielding in radiation fields sources review of painteractions. Analyze the common radisources encountered in sidesign and Monte Carlo simulation for shielding analysis. Explain buildup factors, exter point kernel techniques to include buildup point kernel codes, me facility shielding for photons	PING) Tation and rticle ation hield ation and rding clude dical and	trans os an Des ding	sport d du sign and	solu Ict pe Con l Pre	enetra sidera otecti	: stration ation on,	met met s fo Rea	t-ahe hods or S ₁ ctor	ead aps; skypace shie	shing Appl Iding	ximati e and licatio g des
	method of scatter, in Emerging calculation SKILL No. CO1 CO2	of moments, discrete ordinate medical facility shielding, S g Technologies in Radiations. MAPPING (CO-PO MAPPING) Course Learning Outcome Apply fundamentals of radishielding in radiation fields sources review of painteractions. Analyze the common radisources encountered in sidesign and Monte Carlo simulator shielding analysis. Explain buildup factors, exterpoint kernel techniques to including point kernel codes, me facility shielding for photons different techniques for neutron	PING) Tation and rticle ation hield ation and n. ions:	transos an Des ding 2	sport d du sign and	solu Ict pe Con l Pre	enetra sidera otecti	: stration ation on,	met met s fo Rea	t-ahe hods or S ₁ ctor	ead aps; skypace shie	shing Appl Iding	ximati e and licatio g des

175

moments; albedos and duct penetration methods; skyshine and air scatter.

(3 – High, 2- Medium, 1-low)

JUSTIFICAT	TION FOR CO-PO MA	PPING				
Mapping	Corresponding Level of Matching	Justification				
CO1-PO1	2	In order to apply fundamentals of radiation shielding in radiation fields and sources review of particle interactions, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.				
CO2-PO2	3	In order to analyze the common radiation sources encountered in and Monte Carlo simulation for shielding analysis, identification research literature and analysis of complex engineering prob- substantiated conclusions using first principles of mathematics, in and engineering sciences are required	n, formulation, olems reaching natural sciences			
CO3-PO2	3	In order to explain buildup factors, extending point kernel techni- buildup point kernel codes, medical facility shielding for photon techniques for neutron, identification, formulation, research analysis of complex engineering problems reaching substantiat using first principles of mathematics, natural sciences and engine are required	as and different literature and ed conclusions			
CO4-PO2	2	In order to evaluate transport solutions: straight-ahead approxin ordinates, method of moments; albedos and duct penetration met and air scatter identification, formulation, research literature a complex engineering problems reaching substantiated conclusi principles of mathematics, natural sciences and engineering sciences	chods; skyshine nd analysis of ons using first			
TEACHING	LEARNING STRATE	GY				
Teaching and l	Learning Activities		Engagement (hours)			
	Face-to-Face Learning Lecture Practical / Tu Student-Cent	torial / Studio	42			
	Self-Directed Learnin Non-face-to-f Revision	g	84 21			
	Formal Assessment Continuous A Mid-Term Final Examin		2 1 3			
	Total		153			
TEACHING	METHODOLOGY					
Lecture and Di	iscussion, Co-operative	and Collaborative Method, Problem Based Method				
COURSE SCI	HEDULE					
Weeks		Topics	Remarks			
Week-1	Fundamental concepts	s: definition of a shield				
Week-2	Fundamental concepts particle interactions	s: characterizations of radiation fields and sources review of	Class Test 1, Final			
Week-3	*	s: common radiation sources encountered in shield design	- Exam			

Week-4	Monte Carlo simulation for shielding analysis (I)					
Week-5	k-5 Monte Carlo simulation for shielding analysis (II)					
Week-6 Monte Carlo simulation for shielding analysis (III)						
Week-7	Basic methods for radiation dose calculations (I)					
Week-8	Basic methods for radiation dose calculations (II)	Mid				
Week-9	Special techniques for photons: buildup factors, extending point kernel techniques to include buildup point kernel codes, medical facility shielding (I)	Term, Final				
Week-10	Special techniques for photons: buildup factors, extending point kernel techniques to include buildup point kernel codes, medical facility shielding (II)	Exam				
Week-11	Special techniques for neutrons, transport solutions: straight-ahead approximation, discrete ordinates, method of moments (I)					
Week-12	Special techniques for neutrons, transport solutions: straight-ahead approximation, discrete ordinates, method of moments (II)	Class Test 3, Final				
Week-13	Albedos and duct penetration methods; skyshine and air scatter (I)	Exam				
Week-14	Albedos and duct penetration methods; skyshine and air scatter (II) and review					

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C3, C4, C5
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C3, C4
	Mid term	10%	CO3	C5
I	Final Examination		CO1-CO4	C3, C4, C5
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Melissa Martin & P. H. McGinley, *Shielding Techniques for Radiation Oncology Facilities*, 3rd Edition, USA, Medical Physics Publishing, 2020.
- 2. Claude Leroy & Pier-Giorgio Rancoita, *Principles of Radiation Interaction In Matter and Detection*, 4th Edition, Singapore, World Scientific Publishing, 2015
- 3. Lamarsh, J.R. and Baratta, A.J., *Introduction to Nuclear Engineering*, 3rd Edition, USA, Prentice Hall, 2001.

REFERENCE SITE

Level-4, Term-I

	COURSE INFORMATION									
Course Code Course Title	: NE 417 : Nuclear Accidents Analysis and Nu Emergency	ıclear Radiologica	al H	Lecture C ours Credit Ho		:	3.00 3.00			
	PRE-REQUISITE									
	None									
	CURRICULUM STRUCTURE									
	Outcome Based Education (OBE)									
	SYNOPSIS/RATIONALE									
	The course is designed to learn and emergencies cause by these accident		out the n	uclear acc	cidents	and	radiological			
	OBJECTIVES									
	 To understand the fundamentals of safety functions in major nuclear and radiological accidents investigation. To know various methods of accidental analysis. To identify various types of operating procedures and plant simulators. To evaluate the qualification and training of users. To understand nuclear or radiological emergency response plan of Bangladesh 									
	LEARNING OUTCOMES	COMES								
	Upon completion of the course, the s	students will be ab	ole to							
	 Explain major nuclear and radiol Understand nuclear or radiologic Analyze various methods of accidental conditions Evaluate various types of operation 	cal emergency respective analysis	for the	better in	•	to the	society in			
	COURSE OUTCOMES & GENER	RIC SKILLS								
No.	Course Learning Outcome	Corresponding POs	Bloom' Taxonor		CA	KP	Assessment Methods			
CO1	Explain major nuclear and radiological accidents.	PO1	C2	-	-	3	T, Q, F			
CO2	Understand nuclear or radiological emergency response plan.	PO2	C4	-	-	4	T, ASG, F			
CO3	Analyze various methods of accidental analysis for the better impact to the society in accidental conditions	PO6	C5	-	-	5	MT, F			
CO4	Evaluate various types of operating procedures and plant simulators.	PO3	C6	1	-	6	Q,T, F			
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)									
	COURSE CONTENT									

Principles of Nuclear Power Plant Safety, Dispersion of Effluents from Nuclear Facilities, Radiation Doses from Nuclear Facilities, Radiation Doses from Nuclear Plants, Reactor Siting, Reactor Accidents, Accident Risk Analysis, Environmental Radiation Doses, Major nuclear and radiological accidents investigation, categorization of initiating events, conservative analyses, best estimate analyses, accident modelling, licensing analysis, validation of emergency, probabilistic safety analysis, deterministic safety analysis, support for accident management and emergency planning, analysis of operational events, regulatory audit analysis, sources of user effects, reduction of user effects, qualification and training of users, method of analysis, other ways to reduce user effects, accident management, emergency operation procedure, analysis of operation transients, accidents and severe accidents, accident phenomena, including severe accidents, accident mitigation, format and structure of accident analysis results, review of accident analysis results.

Overview of National Nuclear or Radiological Emergency Response Plan (NNREP): Purpose, scope, types of emergencies, organization of the government response, radiological monitoring and assessment, medical assessment and response to radiological consequences, stages of the government response, international co-ordination-requests for assistance in nuclear or radiological emergency, maintaining and updating the NNREP plan.

SKILL MAPPING (CO-PO MAPPING)

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	2	In order to explain major nuclear and radiological accidents, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.
CO2- PO2	3	In order to understand nuclear or radiological emergency response plan, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO3-PO6	3	In order to analyze various methods of accidental analysis, application of reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems is required.
CO4-PO4	3	In order to evaluate various types of operating procedures and plant simulators, it is required to conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions

TEACHING LEARNING STRATEGY				
Teaching and Learning Activities	Engagement (hours)			
Face-to-Face Learning				
Lecture	42			
Practical / Tutorial / Studio	-			
Student-Centered Learning	-			
Self-Directed Learning				
Non-face-to-face learning	84			
Revision	21			
Formal Assessment				
Continuous Assessment	2			
Mid-Term	1			
Final Examination	3			
Total	153			

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics			
Week-1	Principles of Nuclear Power Plant Safety, Dispersion of Effluents from Nuclear Facilities			
Week-2	Radiation Doses from Nuclear Facilities, Radiation Doses from Nuclear Plants			
Week-3	Reactor Siting, Reactor Accidents, Accident Risk Analysis, Environmental Radiation Doses			
Week-4	Major nuclear and radiological accidents investigation, categorization of initiating events, conservative analyses	Class Test		
Week-5	Best estimate analyses, accident modelling, licensing analysis, validation of emergency			
Week-6	Probabilistic safety analysis, deterministic safety analysis, support for accident management and emergency planning			
Week-7	Analysis of operational events, regulatory audit analysis, sources of user effects, reduction of user effects, qualification and training of users, method of analysis, other ways to reduce user effects			
Week-8	Accident management, emergency operation procedure, analysis of operation transients, accidents and severe accidents, accident phenomena, including severe accidents			
Week-9	Accident mitigation, format and structure of accident analysis results, review of accident analysis results	Exam		
Week-10	Overview of National Nuclear or Radiological Emergency Response Plan (NNREP): Purpose, scope, types of emergencies, organization of the government response,			
Week-11	Radiological monitoring and assessment, medical assessment and response to radiological consequences			
Week-12	Stages of the government response, international co-ordination-requests for assistance in nuclear or radiological emergency,	Class Test		

Week-13	Maintaining and updating the NNREP plan,	3, Final Exam
Week-14	Review class	

ASSESSMENT STRATEGY

	Components	Grading	СО	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C2, C4, C6
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2, CO4	C2, C4, C6
	Mid term	10%	CO3	C5
H	Final Examination	60%	CO1-CO4	C2, C4, C5, C6
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. International Atomic Energy Agency, *Accident Analysis for Nuclear Power Plants*, Safety Reports Series No. 23, IAEA, 2002.
- 2. International Atomic Energy Agency, *Accident Management Programmes for Nuclear Power Plants, IAEA*, Safety Standards Series No. SSG-54, IAEA, 2019

REFERENCE SITE

Level-4, Term-II

	COURSE INFORMATION					
Course Code Course Title	: NE 423 : In-core Fuel Management	Lecture Contact Hours Credit Hours : 3.00 : 3.00				
	PRE-REQUISITE					
	None					
	CURRICULUM STRUCTURE					
	Outcome Based Education (OBE)					
	SYNOPSIS/RATIONALE					
	The course is designed to learn and familiarize about the in-core fuel management system and analyze the reactor core with fuel burnup.					
	OBJECTIVES					

- 1. To understand the fundamentals of in core fuel management.
- 2. To know the fundamentals of reactor reload calculations.
- 3. To identify various types of models for in-core fuel managements.
- 4. To evaluate nuclear fuel cycle economics, core life time calculation.
- 5. To know about fuel reshuffling and arrangement.

LEARNING OUTCOMES

Upon completion of the course, the students will be able to

- 1. Understand the operation and control of nuclear power reactor.
- 2. Explain nuclear reactor start-up, operational modes, transients and shutdown.
- 3. Compare various types of models for in-core fuel managements.
- 4. Evaluate nuclear fuel cycle economics, core life time calculation, fuel reshuffling and arrangement.

COURSE OUTCOMES & GENERIC SKILLS Corresponding Bloom's Assessment CP CA KP No. Course Learning Outcome **POs** Taxonomy Methods **Understand** the operation and control of PO1, PO2 C2 3 CO₁ T, Q, F nuclear power reactor. Explain nuclear reactor start-up, operational modes, transients and CO2 PO3 C5 4 ASG, F shutdown. Analyze various types of reactor models CO3 PO2 C5 5 MT, F for in-core fuel managements. Evaluate nuclear fuel cycle economics, CO4 core life time calculation, fuel reshuffling PO₃ C5 T.F and arrangement.

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

COURSE CONTENT

Introduction to fuel management, variables of core management, reactor core analysis, core simulation and nodal methods, core burnup and fuel, depletion modelling, fundamentals of reactor reload calculations, models for in-core fuel managements, PWR in-core fuel management, BWR in-core fuel management, VVER in-core fuel management, Gen IV in-core fuel management, optimization of core reload designs and burnable poison placement, nuclear fuel cycle economics, core life time calculation, fuel reshuffling and arrangement.

SKILL MAPPING(CO-PO MAPPING)

NT.	G I		PROGRAM OUTCOMES (PO)										
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	1
CO1	Understand the operation and control of nuclear power reactor.	2	3										
CO2	Explain nuclear reactor start-up, operational modes, transients and shutdown.			3									
CO3	Analyze various types of reactor models for in-core fuel managements.		3										
CO4	Evaluate nuclear fuel cycle economics, core life time calculation, fuel reshuffling and arrangement.			3									

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	2	In order understand the operation and control of nuclear power reactor, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.
CO1-PO2	3	In order to understand the operation and control of nuclear power reactor, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO2-PO3	3	In order to explain nuclear reactor start-up, operational modes, transients and shutdown, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
CO3-PO2	3	In order to compare various types of models for in-core fuel managements, it is required to conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
CO4-PO3	3	In order to evaluate nuclear fuel cycle economics, core life time calculation, fuel reshuffling and arrangement, ability to design a system or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2

Mid-Term Final Examination	1 3
Total	153

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Introduction to fuel management, variables of core management	
Week-2	Reactor core analysis	Class Test 1, Final Exam
Week-3	Core simulation and nodal methods	Exam
Week-4	Core burnup and fuel depletion modelling	
Week-5	Fundamentals of reactor reload calculations	Class Test 2, Final
Week-6	Models for in-core fuel managements	Exam
Week-7	PWR in-core fuel management	
Week-8	BWR in-core fuel management	Mid
Week-9	VVER in-core fuel management, Gen IV in-core fuel management	Term, Final
Week-10	Optimization of core reload designs and burnable poison placement	Exam
Week-11	Nuclear fuel cycle economics	
Week-12	Core life time calculation	Class Test
Week-13	Fuel reshuffling and arrangement	3, Final Exam
Week-14	Review class	

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Continuous Assessment (40%) Class Test/ Assignment (1-3) Class Participation and Class attendance		CO1, CO2, CO4	C2, C5
			CO1, CO2	C2, C5
	Mid term	10%	CO3	C5
Final Examination		60%	CO1-CO4	C2, C5
	Total Marks	100%		

 $(CO = Course\ Outcome,\ C = Cognitive\ Domain,\ P = Psychomotor\ Domain,\ A = Affective\ Domain)$

REFERENCE BOOKS

- 1. G. Cochran, and N. Tsoulfanidis, The Nuclear Fuel Cycle: Analysis and Management, ANS 2002.
- 2. M. Driscoll, T. Downar, and E. Pilat, The Linear Reactivity Model for Nuclear Fuel Management
- 3. K. Ott, and W. Bezella, Introductory Nuclear Reactor Statics, ANS, 1983.
- 4. R. J. Stamm'ler, and M. Abate, Methods of Steady State Reactor Physics in Nuclear Design, Academic Press
- 5. P. Silvennoinen, "Reactor Core Fuel Management", Pergamon Press, 1976

REFERENCE SITE

Level-4 Term-II

	COURSE INFORMATIO	N						
Course Code Course Title	: NE 424 : In-core Fuel Management	Sessional	Lecture Cont. Credit Hours	act Hou	rs		2.0	
	PRE-REQUISITE	PRE-REQUISITE						
	None							
	CURRICULUM STRUCTURE							
	Outcome Based Education (OBE)						
	SYNOPSIS/RATIONALE							
	The course is designed to learn and familiarize about the in-core fuel management system and analyze the reactor core with fuel burnup.							
	OBJECTIVES							
	1. To understand the fundamentals of in core fuel management.							
	2. To know the fundamentals of reactor reload calculations.							
	3. To identify various type	es of models for in	n-core fuel mar	nageme	nts.			
	4. To evaluate nuclear fuel	•		calcul	ation.			
	5. To know about fuel resh		gement.					
			vill be able to					
	 Upon completion of the course, the students will be able to Understand the operation and control of nuclear power reactor. Explain nuclear reactor start-up, operational modes, transients and shutdown. Compare various types of models for in-core fuel managements. Evaluate nuclear fuel cycle economics, core life time calculation, fuel reshuffling and arrangement. 							
	COURSE OUTCOMES &		Bloom's		I		Assassment	
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods	
COI	Understand the operation and control of nuclear power reactor.	PO1, PO2	C2	-	-	3	T, Q, F	

CO2	Explain nuclear reactor start-up, operational modes, transients and shutdown.	PO3	C5	-	-	4	ASG, F
	Compare various types of models for in-core fuel managements.		C5	-	-	5	MT, F
CO4	Evaluate nuclear fuel cycle economics, core life time calculation, fuel reshuffling and arrangement.		C5	1	-	6	T, F

 $(CP\mbox{-} Complex\mbox{ } Problems,\mbox{ } CA\mbox{-} Complex\mbox{ } Activities,\mbox{ } KP\mbox{-} Knowledge\mbox{ } Profile,\mbox{ } T\mbox{-} Test\mbox{ } ;\mbox{ } PR\mbox{-} Project\mbox{ } ;\mbox{ } Q\mbox{-} Quiz;\mbox{ } ASG\mbox{-} Assignment;\mbox{ } Pr\mbox{-} Presentation;\mbox{ } R\mbox{-} Project\mbox{ } ;\mbox{ } F\mbox{-} Final\mbox{ } Exam,\mbox{ } MT\mbox{-} Mid\mbox{ } Term\mbox{ } Exam,\mbox{ } OE\mbox{-} Online\mbox{ } Exam)$

		COURSE CONTENT	COURSE CONTENT											
	 Study of burnup of a fuel pincell with different configurations using probabilistic or deterministic code. Study of burnup of a fuel assembly with different configurations using probabilistic or deterministic code. Effect of burnable poisons on the burnup of an assembly. Study of different thermo-mechanical properties of material using ANSYS software. Study the effects of reshuffling of a reactor core using probabilistic code. 													
	SKILL MAPPING (CO-PO MAPPING)													
			PROGRAM OUTCOMES (PO)											
No.	C	ourse Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	CO1 Understand knowledge of probabilistic or deterministic code to find the effect of reshuffling of a reactor core.		3											
CO2 Apply knowledge of burnup concepts to assess different parameters.			3											
CO3	basic prog	practical knowledge to develop gramming skills using ANSYS ect to core design.						3						

(3 – High, 2- Medium, 1-low)

JUSTIFICATION	JUSTIFICATION FOR CO-PO MAPPING									
Mapping	Corresponding Level of Matching	Justification								
CO1-PO1	3	In order to apply knowledge of probabilistic or deterministic code to find the effect of reshuffling on a reactor core, knowledge of in-core fuel management is crucial.								
CO2-PO2	3	In order to apply knowledge of burnup concepts to assess different parameters to ensure proper in-core fuel management.								

CO3-PO6	3	Apply practical knowledge to develop basic programming skills using ANSYS for solving complex engineering problems.			
TEACHING LEA	ARNING STRATEGY				
Teaching and Lear	rning Activities		Engagement (hours)		
	Face-to-Face Learning				
	Lecture	21			
	Practical / Tut	-			
	Student-Cente	red Learning	-		
	Self-Directed Learning				
	Non-face-to-fa	ace learning	42		
	Revision		21		
	Formal Assessment				
	Continuous As	ssessment	2		
	Mid-Term		1		
	Final Examina	ition	3		

	Total	90								
TEACHING ME	TEACHING METHODOLOGY									
Lecture and Discu	Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method									
COURSE SCHE	DULE									
Weeks	Topics	Remarks								
Week-1	Introduction class									
Week-2	Study of burnup of a fuel pincell with different configurations using probabilistic or deterministic code.	Evaluation 1								
Week-3	Study of burnup of a fuel assembly with different configurations using probabilistic or deterministic code.	5								
Week-4	Effect of burnable poisons on the burnup of an assembly.	Evaluation 2								
Week-5	Study of different thermo-mechanical properties of material using ANSYS software.									
Week-6	Study the effects of reshuffling on a reactor core using probabilistic code.	Evaluation 3								
Week-7	Final exam									
ASSESSMENT S	STRATEGY									

	Components	Grading	CO	Blooms Taxonomy
Continuous	Lab performance and Report	10%		
Assessment	0.11. 1		CO1, CO2	C3, A2
(40%)	Class Evaluation	20%	CO2	C3, A2
	Lab Quiz		CO1, CO2	C3, A2
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 6. P. Silvennoinen, "Reactor Core Fuel Management", Pergamon Press, 1976
- 7. M. Driscoll, T. Downar, and E. Pilat, The Linear Reactivity Model for Nuclear Fuel Management

n	100	Di B	n		A T	100	a	14	N	6
К	ŧИ	$\mathbf{F}'\mathbf{F}$	Æ	UЛ	N	н,	2			ď,

Level-4, Term-I

	GOVIDGE VIEW DISCHES									
	COURSE INFORMATION									
Course Code Course Title	: NE 425 : Nuclear Reactor Design and Features	Lecture Contact Hours Credit Hours	: 3.00 : 3.00							
	PRE-REQUISITE	PRE-REQUISITE								
	NE 207, NE 307									
	CURRICULUM STRUCTURE									
	Outcome Based Education (OBE)									
	SYNOPSIS/RATIONALE									
	This course is designed to understand and identify various types of approaches and methods of nuclear reactor core design. It also helps to analyze various designs of reactor core satisfying the parameters of the particular reactor type.									
	OBJECTIVES									
	 To understand the fundamentals of nuclear reactor design for criticality and burnup calculation. To identify various types of principles and techniques of reactor core design methods. To analyze unique designs of reactor core satisfying the parameters of the particular reactor type. To evaluate the various reactor designs based on knowledge and data from many nuclear engineering fields including reactor physics, thermal hydraulics, and nuclear safety. 									
	LEARNING OUTCOMES									

Upon completion of the course, the students will be able to Identify various types of principles and techniques of reactor core design methods. Analyze various unique designs of reactor core satisfying the parameters of the particular reactor type. 3. Evaluate the various reactor designs based on knowledge and data from many nuclear engineering fields including reactor physics, thermal hydraulics, and nuclear safety. Formulate the design procedure of reactor parameters. COURSE OUTCOMES & GENERIC SKILLS Corresponding Bloom's Assessment KP CP CA No. Course Learning Outcome **POs Taxonomy** Methods **Identify** various types of principles PO2 C2 2 CO1 and techniques of reactor core design T, Q, F Analyze various unique designs of CO₂ PO₃ C4 3 ASG, F reactor core satisfying the parameters of the particular reactor type. Evaluate the various reactor designs based on knowledge and data from CO3 many nuclear engineering fields PO2 C5 3 MT, F including reactor physics, thermal hydraulics, and nuclear safety. Formulate the design procedure of 3 5 CO₄ PO9 C6 3 T, F, ASG reactor parameters. (CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam) **COURSE CONTENT** Nuclear data – compilation, evaluation, processing, validation. Use of nuclear data in fission, neutron transport, reactor design, isotope production, forensic analysis, Energy group condensation, Reactor analysis using two group and single group nuclear cross section, Reactor core calculations, solution of 1D, 2D diffusion equation using Finite Difference Method, solution of multigroup diffusion equation using Finite Difference Method, Solution of Eigen value problem using fission source, Solution of multigroup eigen value problem, PWR core design, Core size and figure, Optimization of fuel lattice, Fuel assembly design, Rod cluster control assembly, soluble boron concentration regulation, Future trends of core design, Low leakage core, MOX fuel, Neutron energy spectrum of thermal reactor and fast reactor, Different types of deterministic and Monte Carlo codes, Engineering design and features of different generation-IV advanced reactors, Burnup calculation, burnup chain, branching ratio. Burnup equation, burnup time. Normalization of neutron flux.

SKILL MAPPING (CO-PO MAPPING)

N]	PRO	GRA	PROGRAM OUTCOMES (PO)									
NO.	No. Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12			
CO1	Identify various types of principles and techniques of reactor core design methods.		3													
CO2	Analyze various unique designs of reactor core satisfying the parameters of the particular reactor type.			3												
CO3	Evaluate the various reactor designs based on knowledge and data from many nuclear engineering fields including reactor physics, thermal hydraulics, and nuclear safety.		2													
CO4	Formulate the design procedure of reactor parameters.									2						

(3 – High, 2- Medium, 1-low) JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO2	3	In order to identify various types of principles and techniques of reactor core design methods, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO2-PO3	3	In order to analyze various unique designs of reactor core satisfying the parameters of the particular reactor type, it is required to conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
CO3-PO4	2	In order to evaluate the various reactor designs based on knowledge and data from many nuclear engineering fields including reactor physics, thermal hydraulics, and nuclear safety, it is required to conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
CO4-PO9	2	In order to formulate the design procedure of reactor parameters, by performing individual and group tasks through the design and analysis of different reactors.

TEACHING LEARNING STRATEGY

TEACHING LEARNING STRATEGT	
Teaching and Learning Activities	Engagement
	(hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3

	Total	153

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Nuclear data – compilation, evaluation, processing, validation. Use of nuclear data in fission	Class Test
Week-2	Neutron transport, reactor design, isotope production	1, Final Exam
Week-3	Forensic analysis, Energy group condensation	Exam
Week-4	Reactor analysis using two group and single group nuclear cross section, Reactor core calculations	Class Test
Week-5	Solution of 1D, 2D diffusion equation using Finite Difference Method, solution of multigroup diffusion equation using Finite Difference Method	2, Final Exam
Week-6	Solution of Eigen value problem using fission source, Solution of multigroup eigen value problem,	
Week-7	PWR core design, Core size and figure, Optimization of fuel lattice, Fuel assembly design	
Week-8	Rod cluster control assembly, soluble boron concentration regulation, Future trends of core design	Mid Term, Final Exam
Week-9	Low leakage core, MOX fuel, Neutron energy spectrum of thermal reactor and fast reactor,	
Week-10	Different types of deterministic and Monte Carlo codes, Engineering design and features of different generation-IV advanced reactors	
Week-11	Burnup calculation, burnup chain, branching ratio	Class Tast
Week-12	Burnup equation, burnup time	Class Test 3, Final
Week-13	Normalization of neutron flux	Exam
Week-14	Review class	LAMIII

ASSESSMENT STRATEGY

Comp	Components		CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C2, C4, C6
Assessment (40%)	Class Participation	5%+ 5% (attnd)	CO1, CO2, CO4	C2, C4, C6
	Mid term	10%	CO3	C5
Final Ex	amination	60%	CO1, CO2, CO3, CO4	C2, C4,C5,C6
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Y. Oka, Nuclear Reactor Design, 1st ed. Springer, 2014
- 2. H. Anglart, Applied Reactor Technology, 2011
- 3. A. Sesonske, *Nuclear Power Plant Design Analysis*, Technical Information Center, United States Atomic Energy Commission, 1973
- 4. S. Glasstone, A Sesonske, *Nuclear Reactor Engineering: Reactor Design Basics*, 1st ed. Springer US, 1994.
- 5. J. J. Duderstadt, L. J. Hamilton, *Nuclear Reactor Analysis*, 1st ed. Wiley, 1977

REFERENCE SITE

Level-4, Term-I

	COURSE INFORMATION						
Course Code	: NE 426 Lecture Contact Hours : 3.00						
Course Title	: Nuclear Reactor Design and Features Sessional	Nuclear Reactor Design and Features Sessional Credit Hours : 1.50					
	PRE-REQUISITE						
	NE 425						
	CURRICULUM STRUCTURE						
	Outcome Based Education (OBE)						
	SYNOPSIS/RATIONALE						
	This course is designed to learn and familiarize the basics of Nuclear Reactors Design and Features						
	OBJECTIVES						
	To verify the theories and concepts learned in NE 425 practically.						

	LEARNING OUTCOMES									
	1. Analyze the design and safety features of a reactor.									
	2. Evaluate the performance parameters of a nuclear reactor.									
	3. Design and Formulate the react	or core and other	feature for re	eal life	applic	cation				
	COURSE OUTCOMES & GENER	RIC SKILLS								
No.	Course Learning Outcome	Corresponding Bloom's POs Taxonomy CP CA KP Assess:								
CO1	Analyze the design and safety features of a reactor.	S PO4 C4 1 1 3 I								
CO2	Evaluate the performance parameters of a nuclear reactor.									
CO3	Design and Formulate the reactor core and other feature for real life application. C6 3 3 6 PR, Pr,									
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)									
	COURSE CONTENT									

- 1. Study the transient behaviour of a research reactor during shutdown and start-up and to measure the thermal coefficient of reactivity change.
- 2. Analysis of shielding properties of water and water-iron combination against the fission neutron spectrum.
- 3. Analysis the critical parameter for different core state scenario.
- 4. Reactor Transient Scenario (Reactor Trip).
- 5. Reactor Transient Scenario (LOCA and SBO).
- 6. Performance analysis of a power rector by Monte Carlo Method.
- 7. Designing of a reactor core using Deterministic or Probabilistic method.
- 8. Burn up calculation of fuel assembly of a Nuclear Reactor using various software (COBRA, MCNP, TRACE, and ORIGEN).
- 9. Burn up calculation of Nuclear Reactor Core using various software (COBRA, MCNP, TRACE, and ORIGEN).
- 10. Analysis of reactivity feedback parameters of a power reactor.

SKILL MAPPING (CO-PO MAPPING)

Ma	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Analyze the design and safety features of a reactor.				3								
CO2	Evaluate the performance parameters of a nuclear reactor.					3							
CO3	Design and Formulate the reactor core and other feature for real life application.									3			

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

JUSTIFICAT	JUSTIFICATION FOR CO-10 MAITING									
Mapping	Corresponding Level of Matching	Justification								
CO1-PO4	3	In order to analyze the design and safety features of a reactor, it is required to conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.								
CO2-PO5	3	In order to evaluate the performance parameters of a nuclear reactor, it is required create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations.								
CO3- PO9	3	In order to design and Formulate the reactor core and other feature for real life application, it is required function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.								

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	28
Lecture	
Practical / Tutorial / Studio Student-Centered Learning	28
Self-Directed Learning Self-Directed Learning	-

Preparation of Lab Reports	28
Preparation of Lab Test Preparation of presentation	21
Preparation of Quiz Engagement in Group Projects	14
Formal Assessment	
Continuous Assessment	1
Final Quiz	1
Total	121

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Study the transient behaviour of a research reactor during shutdown and startup and to measure the thermal coefficient of reactivity change	
Week-2	Analysis of shielding properties of water and water-iron combination against the fission neutron spectrum	
Week-3	Analysis the critical parameter for different core state scenario	
Week-4	Reactor Transient Scenario (Reactor Trip)	
Week-5	Reactor Transient Scenario (LOCA& SBO)	
Week-6	Performance analysis of a power reactor by Monte Carlo Method	
Week-7	Mid Term	
Week-8	Designing of a reactor core using Deterministic or Probabilistic method	
Week-9	Burn up calculation of fuel assembly of a Nuclear Reactor using various software (COBRA, MCNP, TRACE, ORIGEN)	
Week-10	Burn up calculation of Nuclear Reactor Core using various software (COBRA, MCNP, TRACE, ORIGEN)	
Week-11	Analysis of Reactivity feedback parameters of a power reactor	
Week-12	Lab Practice	
Week-13	Lab Test	
Week-14	Quiz and Viva	

ASSESSMENT STRATEGY

Components	Grading	CO	Blooms Taxonomy
Conduct of Lab Tests/Class Performance	25%	CO2, CO3	C5, C6
Report Writing/ Programming	15%	CO1, CO2	C4,C5
Mid-Term Evaluation (exam/project/assignment)	20%	CO1, CO3	C4, C6
Viva Voce	10%	CO1, CO2, CO3	C3, C4, C5
Final Evaluation (Lab Quiz)	30%	CO1, CO2, CO3	C3, C4, C5
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. *A Guide to Nuclear Power Technology*, F. J. Rahn, A. G. Adamantiades, J. E. Kenton, and C. Braun, John Wiley and Sons, 1984.
- 2. Power Plant Engineering, Nage, 3rd eidtion, Tata Mc Graw Hill, 2002.
- 3. Nuclear Reactor Engineering: Reactor Design Basics by Samuel Glasstone Paperback, 1994.
- 4. *Nuclear Reactor Engineering: Reactor Systems Engineering*, 4th Edition, Vol. 2 by Samuel Glasstone, 1994.
- 5. Nuclear Reactor Analysis by Duderstad and Hamilton, Wiley, 1977.
- 6. Nuclear Reactor Design, Oka. Yoshoaki, Springer, 2014, ISBN 978-4-431-54897-3

REFERENCE SITE

Level-4, Term-II

	COURSE INFORMATION										
Course Code	: NE 427	Le	cture Contact	Hours		: 3.0)0				
Course Title	: Nuclear Power Plant Engineering	Cre	edit Hours			: 3.0	00				
	PRE-REQUISITE										
	None										
	CURRICULUM STRUCTURE										
	Outcome Based Education (OBE)										
	SYNOPSIS/RATIONALE										
	This course is designed to impart knowledge on the operation of different nuclear power plants and develop skill on fuel handling mechanism and basic considerations in nuclear power plant design.										
	OBJECTIVES										
	 To know the importance of Nuclear Power Plant operation. To understand the features of different sections of the Nuclear Power Plant. To understand the fuel handling mechanism to achieve the criticality. To understand the power plant operation cost. 										
	LEARNING OUTCOMES										
	Upon completion of the course, the students will be able to										
	 Apply the technical knowledge to design different types of nuclear power plants. Analyze the importance of different components inside the NPP. Understand fuel handling mechanism to achieve criticality. Formulate features of different sections of the Nuclear Power Plant. 										
	COURSE OUTCOMES & GENER	RIC SKILLS									
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessm nt Method				
CO1	Apply the design knowledge to the power plants.	PO1, PO2	СЗ	-	-	1	T, Q, F				
CO2	Analyze the importance of different components inside the NPP.	PO1, PO9, PO10	C4	-	-	2	ASG, I				
CO3	Understand fuel handling mechanism to achieve criticality.	PO5	C2	-	-	6	MT, F				
CO4	Evaluate capital and operating cost of nuclear and fossil based power plant.	PO9	C5	1	-	7	Pr, T, I				
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam) COURSE CONTENT										

Layout of nuclear power plants; containment buildings; primary containment vessels; structure of reactor core; and mechanical stress in various structures. Description and analysis of power plant systems and components including steam generator, steam dryer and separator, pressurizer, reheater, heat exchanger, condenser, demineralizer, pumps, turbine, generator, cooling tower; auxiliary cooling systems. Fuel handling mechanisms; control and mechanisms; electrical systems; reactor grid interface.

Operation and control of nuclear power plant, reactor criticality and start-up operations, power operations (including base load and non-base load operations, reactor following and turbine following modes, etc.), transients, reactor stability, shut down and refueling operations.

Surveillance programs, review and audit, IAEA guidelines in connection with the O&M of NPPs. Basic considerations in nuclear plant design; components of nuclear power cost; economic comparison of nuclear and fossil fueled plants; dual and multipurpose nuclear plants; future trends in nuclear power cost.

SKILL MAPPING(CO-PO MAPPING)

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
NO.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Apply the design knowledge to the power plants.	2	3										
CO2	Analyze the importance of different components inside the NPP.	3								2	2		
CO3	Understand fuel handling mechanism to achieve criticality.					2							
CO4	Evaluate capital and operating cost of nuclear and fossil based power plant.									2		3	

(3 – High, 2- Medium, 1-low)

JUSTIFICAT	ION FOR CO-PO M	APPING
Mapping	Corresponding Level of Matching	Justification
CO1-PO1	2	In order to apply the design knowledge to the power plants, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is required.
CO1-PO2	3	In order to apply the design knowledge to the power plants, ability to conduct experiments and analyze data is highly required.
CO2-PO1	3	In order to analyze the importance of different components inside the NPP, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is required.
CO2-PO9	2	In order to analyze the importance of different components inside the NPP, to act as an individual, and as a team member or a leader in diverse teams is required.
CO2-PO10	2	In order to analyze the importance of different components inside the NPP, communicating on complex engineering activities with engineers and the community at large through discussions, reports and presentations are required.
CO3-PO5	2	In order to understand fuel handling mechanism to achieve criticality, systematic approach, resources, computer based design approach and analytical tools are required.

CO4-PO9	2	In order to compare capital and operating cost of nuclear and for plant, communicating on complex engineering activities with experiments at large through discussions, reports and presentation	engineers and the			
	In order to compare capital and operating cost of nuclear and for					
CO4-PO11	3	plant, knowledge of engineering management and financial required.	principles are			
TEACHING I	EARNING STRATI	CGY				
Teaching and L	earning Activities		Engagement			
			(hours)			
	Face-to-Face Learnin	ng				
	Lecture		42			
	Practical / T	utorial / Studio	-			
	Student-Cen	tered Learning	-			
	Self-Directed Learni	ng				
	Non-face-to	-face learning	84			
	Revision		21			
	Formal Assessment					
	Continuous	Assessment	2			
	Mid-Term		1			
	Final Exami	nation	3			
	Total		153			

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Layout of nuclear power plants	Class
Week-2	Containment buildings; primary containment vessels; structure of reactor core; and mechanical stress in various structures	Test 1, Final
Week-3	Description and analysis of power plant systems	Exam
Week-4	Components including steam generator	Class
Week-5	Description and analysis of steam dryer	Test 2,
Week-6	Separator, pressurizer, reheater, heat exchanger, condenser, demineralizer	Final
Week-7	Pumps, turbine	Exam
Week-8	Generator, cooling tower; auxiliary cooling systems	Mid
Week-9	Fuel handling mechanisms; control and mechanisms; radwaste systems	Term, Final
Week-10	Electrical systems; reactor grid interface and load following	Exam
Week-11	Basic considerations in nuclear plant design; components of nuclear power cost	Class
Week-12	Economic comparison of nuclear and fossil fueled plants	Class

Week-13	Dual and multipurpose nuclear plants	Test 3,
Week-14	Future trends in nuclear power cost	Final Exam

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C3, C4, C5
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C4, C3
, ,	Mid term	10%	CO3	C2
	Final Examination	60%	CO1-CO4	C2, C3, C4, C5
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. J. H.Rust, Nuclear Power Plant Engineering, USA, Haralson, 1979
- 2. El-Wakil, M.M., Nuclear Energy Conversion, USA, Intext Educational Publishers, 1982
- 3. Lish, K.C., Nuclear Power Plant Systems & Equipment, USA, Industrial Press Inc., 1972

REFERENCE SITE

Level-4, Term-II

	COURSE INFORMATION		
Course Code	: NE 428	Lecture Contact Hours	:1.50
Course Title	: Nuclear Power Plant Engineering Sessional	Credit Hours	: 0.75
	PRE-REQUISITE		
	NE 427		
	CURRICULUM STRUCTURE		
	Outcome Based Education (OBE)		
	SYNOPSIS/RATIONALE		
	This course is designed to impart knowledge o and develop skill on fuel handling mechanism design.	•	• •
	OBJECTIVE		

- 1. To know the role of Nuclear Power Plant operation.
 2. To understand the features of different sections of the Nuclear Power Plant.
 3. To understand the function of fuel handling mechanism.
 4. To understand the Power plant operation cost.

 LEARNING OUTCOMES

 Upon completion of the course, the students will be able to

 1. Design and solve NPP relevant problem on the basis of specified requirement by using simulating tools.
- 2. Apply the different thermal hydraulics and neutronics parameters to validate with measured data. COURSE OUTCOMES & GENERIC SKILLS Corresponding Bloom's Assessment No. CP CA KP Course Learning Outcome **POs** Taxonomy Methods **Design** and **solve** NPP relevant CO1 PO4 C6 problem on the basis of specified 1 1 4 R, Q, T requirement by using simulating tools. **Apply** the different thermal hydraulics CO2 and neutronics parameters to validate PO5 C3 5 R, Pr, T 1 1 with measured data. (CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T - Test; PR - Project; Q -Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam) **COURSE CONTENT** 1. Design a reactor component and analyze its parameters on different condition. 2. Determine reactor power in case of different control rod position and fuel alignment by using specific simulating software.
 - 3. Compare different reactor parameters on steady state condition and any transient state such as LOCA condition.
 - 4. Calculation of radiation dose inside the containment and outside the containment in case of any transient situation.
 - 5. Determination of control rod worth and Control rod differential worth inside the reactor.

SKILL MAPPING (CO-PO MAPPING)

No	Course Learning Outcome			P	ROC	GRA	M C	UTO	COM	IES ((PO)	PROGRAM OUTCOMES (PO)									
No.		1	2	3	4	5	6	7	8	9	10	11	12								
CO1	Design and solve NPP relevant problem on the basis of specified requirement by using simulating tools.				3																
CO2	Apply the different thermal hydraulics and neutronics parameters to validate with measured data.					3															

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Ju	stification		
CO1-PO4	3	In order to be able to design and s specified requirement by using simular	lating tools, to analy	yzing data is	required.
CO2-PO5	3	In order to enable to apply the oparameters to validate with measurements			
		computer-based design approach ar product or output are required.	nd analytical tools	in the devel	lopment of
EACHING	LEARNING STRATE	CGY			
eaching and	Learning Activities			E	ngagement (hours)
	Face-to-Face Learnin	ng			
	Lecture				7
		utorial / Studio			14
		tered Learning			-
	Self-Directed Learnin				
		-face learning			42
	Revision				21
	Formal Assessment				
	Continuous A	Assessment			2
	Mid term				1
	Final Examin	nation			3
	Total				00
EACHING	Total METHODOLOGY				90
	METHODOLOGY		D 11/4 1		90
	METHODOLOGY	and Collaborative Method, Proble	m Based Method		90
	METHODOLOGY Discussion, Co-operative	and Collaborative Method, Proble	m Based Method		90
ecture and D	METHODOLOGY Discussion, Co-operative	and Collaborative Method, Proble Topics	m Based Method		90 Remarks
ecture and D	METHODOLOGY Discussion, Co-operative CHEDULE			ition	
ecture and D COURSE SC Weeks	METHODOLOGY Discussion, Co-operative CHEDULE Design a reactor com Determine reactor po	Topics aponent and analyze its parameters ower in case of different control roo	on different cond		
ecture and D COURSE SC Weeks Week-1	METHODOLOGY Discussion, Co-operative CHEDULE Design a reactor com Determine reactor por alignment by using s	Topics Iponent and analyze its parameters ower in case of different control roc pecific simulating software eactor parameters on steady state c	on different condi	erent fuel	
Week-1 Week-2	Design a reactor com Determine reactor por alignment by using some Compare different restate such as LOCA of the Document of t	Topics aponent and analyze its parameters ower in case of different control rocepecific simulating software eactor parameters on steady state condition tion dose inside the containment are	on different condition and different and any	transient	
Weeks Week-1 Week-2 Week-3	Design a reactor com Determine reactor por alignment by using s Compare different re state such as LOCA of Calculation of radiat in case of any transie	Topics aponent and analyze its parameters ower in case of different control rocepecific simulating software eactor parameters on steady state condition tion dose inside the containment are	on different condition and different condition and any and outside the con	transient tainment	
Weeks Week-1 Week-2 Week-3 Week-4	Design a reactor com Determine reactor por alignment by using s Compare different re state such as LOCA or Calculation of radiat in case of any transie	Topics aponent and analyze its parameters ower in case of different control roc pecific simulating software eactor parameters on steady state oc condition tion dose inside the containment are ent situation	on different condition and different condition and any and outside the con	transient tainment	
Week-3 Week-4 Week-5	Design a reactor com Determine reactor por alignment by using s Compare different re state such as LOCA or Calculation of radiat in case of any transie Determination of cor reactor	Topics aponent and analyze its parameters ower in case of different control roc pecific simulating software eactor parameters on steady state oc condition tion dose inside the containment are ent situation	on different condition and different condition and any and outside the con	transient tainment	
Week-3 Week-4 Week-5 Week-6 Week-7	Design a reactor com Determine reactor por alignment by using s Compare different re state such as LOCA or Calculation of radiat in case of any transie Determination of cor reactor Lab Test	Topics aponent and analyze its parameters ower in case of different control roc pecific simulating software eactor parameters on steady state oc condition tion dose inside the containment are ent situation	on different condition and different condition and any and outside the con	transient tainment	
Week-3 Week-4 Week-5 Week-6 Week-7	Design a reactor com Determine reactor por alignment by using s Compare different re state such as LOCA or Calculation of radiat in case of any transie Determination of cor reactor Lab Test Quiz test, Viva	Topics aponent and analyze its parameters ower in case of different control roc pecific simulating software eactor parameters on steady state oc condition tion dose inside the containment are ent situation	on different condition and different condition and any and outside the con	transient tainment	Remarks

Continuous	Lab participation and Report	20%	CO 1, CO2	C3, C6
Assessment (40%)	Labtest-1, Labtest-2	40%	CO 1, CO2	C3, C6
(10,0)	Project/ Presentation	15%	CO 2	C3
	Lab Quiz	25%	CO 1, CO2	C3, C6

Total Marks	100%	

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Knoll, G.F.: Radiation Detection and Measurements, 2010.
- 2. Price, W.J.: Nuclear Radiation Detection, 1964.
- 3. Introduction to Health Physics by H. Cember, 1969.
- 4. Physics and Engineering of Radiation Detection, 2nd Edition by Syed Ahmed, 2007

D	Tr Tr	FP	FN	CE	CTT	TT
\mathbf{r}	בו ער	\mathbf{r}				

Level-3, Term-I

	COURSE INFORMATION						
			T				
Course Code	: GEPM 381	Lecture Contact Hours	: 2.00				
Course Title	: Project Management and Finance	Credit Hours	: 2.00				
	PRE-REQUISITE						
	None						
	CURRICULUM STRUCTURE						
	Outcome Based Education (OBE)						
	SYNOPSIS/RATIONALE						
	This course has been designed to understand the overlapping connection between engineering and management with financial matters in an organization through the study of varied management practices and finance as an engineer.						
	OBJECTIVES						
	 To introduce some aspects of business management and business organization. To identify the tools and techniques needed to lead any project to its intended conclusion. To introduce sales fundamentals include understanding the customer and the competition, sales strategy, sales management, product positioning, product life cycle, sales structures, margins, and prospecting for new customers. 						
	LEARNING OUTCOMES						

Upon completion of the course, the students will be able to

- 1. Develop in depth idea on nuclear project management and organization to perform the Management Functions.
- 2. Compare between selected Theories of Management.
- 3. Design nuclear project and to perform the functions in the Marketing Mix.
- 4. Develop knowledge of effective material management; management and resource allocation; Engineering economy and assessment on ethical issues in business situations.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Understand in depth idea on nuclear project management and organization to perform the Management Functions.	PO1, PO11	C3	1	-	1	T, Q, F
CO2	Compare between selected Theories of Management.	PO1	C4	2	1	1	ASG, F
CO3	Design nuclear project and to perform the functions in the Marketing Mix.	PO2, PO3	C5	2	I	1	MT, F
CO4	Apply knowledge of effective material management, management and resource allocation; Engineering economy and assessment on ethical issues in business situations.	PO11	C6	3	1	2	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Project characteristics and evaluation: Definition and characteristics of projects, project life cycle and phases, Environmental assessment(EA), Initial environmental examination (IEE), Environmental impact assessment (EIA); Project management principles; Management of project planning, financing and implementation; Project scheduling, CPM, PERT, demand and supply forecasting, inventory control, and quality management; Human resource development (HRD) planning; Personnel management, importance, hierarchy, motivation, leadership, wage incentives, performance appraisal, participative management; Risk management of projects; IAEA Milestone approaches for nuclear national infrastructure development and nuclear power project management.

Cost fundamentals: Elements of cost of products, cost centres and allocation of overhead costs; marginal costing, standard costing, cost planning and control, budget and budgetary control.

Financial and Economic Parameters of Power Plants: Financial parameters, Economic parameters, Financial vs Economic analysis of a power plant project, Discount rate, Discounting formula, Overnight construction costs, Interest during construction (IDC), Project profitability parameters; Net Present Value (NPV), Internal Rate of Return (IRR), Benefit Cost Ratio (BCR), and Pay Back Period (PBP), Different types of cost concepts, Engineering, procurement, and construction (EPC) project cost, Turnkey cost, Levelized cost of electricity generation (LCOE).

Basic Parameters of Power Plant Economics: Capital expenditures (CAPEX), Operational expenditures (OPEX), O&M costs; Fixed costs and variable costs, Relationship between OPEX and O&M costs, Components under CAPEX and OPEX, Weighted Average Cost of Capital (WACC).

Case study for project decision-making: Financial and Economic Analysis of a Power Plant Project: Calculation and analysis of LCOE of NPPs both theoretical and modelling methods, Analysis of NPV, IRR, and PBP, BCR, Sensitivity and liquidity analysis during construction and operational cases of a power plant.

SKILL MAPPING (CO-PO MAPPING)

No	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
No.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understand in depth idea on nuclear project management and organization to perform the Management Functions.	3										2	
CO2	Compare between selected Theories of Management.	3											
CO3	Design nuclear project and to perform the functions in the Marketing Mix.		3	2									
CO4	Apply knowledge of effective material management, management and resource allocation; Engineering economy and assessment on ethical issues in business situations.											3	

(3 – High, 2- Medium, 1-low)

JUSTIFICAT	ION FOR CO-PO M.	APPING
Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	The knowledge of mathematics, science, and engineering fundamentals is required to develop in depth idea on nuclear industrial management and organization to perform the Management Functions.
CO1-PO11	2	In order to develop in depth idea on nuclear project management and organization to perform the Management Functions, it is required to demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
CO2-PO1	3	The knowledge of mathematics, science, Engineering fundamentals is required to compare between selected Theories of Management.
CO3-PO2	3	In order to design nuclear project and to perform the functions in the Marketing Mix, identification, formulation, research literature and analysis of complex engineering problems are required to reach substantiated conclusion using first principles of mathematics, sciences and engineering fundamentals.
CO3-PO3	2	In order to design nuclear project and to perform the functions in the Marketing Mix, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.

CO4-PO11	and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.						
TEACHING	LEARNING STRATE	EGY					
Teaching and	Learning Activities		Engagement (hours)				
	Face-to-Face Learnin	ng					
	Lecture						
	Practical / Tutorial / Studio						
		tered Learning	-				
	Self-Directed Learning						
		-face learning	56				
	Revision		14				
	Formal Assessment		2				
	Continuous	Assessment	2				
	Mid-Term	nation	1				
	Final Exami	nation	3 104				
TEACHING			104				
IEACHING	METHODOLOGY						
Lecture and I	Discussion, Co-operative	e and Collaborative Method, Problem Based Method					
	-						
COURSE SO	CHEDULE						
Weeks		Topics	Remarks				
Week-1	Environmental asse	aracteristics of projects, project life cycle and phasessment (EA), Initial environmental examination (IE act assessment (EIA); Project management principles					
Week-2	Week-2 Management of project planning, financing and implementation; Project scheduling, CPM, PERT, demand and supply forecasting, inventory control, and quality management; Human resource development (HRD) planning;						
Week-3	Personnel management, importance, hierarchy, motivation, leadership, wage incentives, performance appraisal, participative management; Risk management of projects; IAEA Milestone approaches for nuclear national infrastructure development and nuclear power project management						
Week-4	Elements of cost of	f products, cost centres and allocation of overhead cost	s;				
Week-5	budgetary control	standard costing, cost planning and control, budget					
Week-6	_	ers, Economic parameters, Financial vs Economic analycoject, Discount rate,					
Week-7	construction (IDC	nula, Overnight construction costs, Interest dur), Project profitability parameters; Net Present Va tte of Return (IRR), Benefit Cost Ratio (BCR),	∽ı rerm.				

Week-8	Capital expenditures (CAPEX), Operational expenditures (OPEX), O&M costs; Fixed costs and variable costs, Relationship between OPEX and O&M costs, Components under CAPEX	Exam
Week-9	and OPEX, Weighted Average Cost of Capital (WACC).	
Week-10	Pay Back Period (PBP), Different types of cost concepts, Engineering, procurement, and construction (EPC) project cost	
Week-11	Turnkey cost, Levelized cost of electricity generation (LCOE).	Class Test 2, Final
Week-12	Case study for project decision-making: Financial and Economic Analysis of a Power Plant Project: Calculation and analysis of LCOE of NPPs both theoretical and modelling methods	
Week-13	Analysis of NPV, IRR, and PBP, BCR, Sensitivity and liquidity analysis during construction and operational cases of a power plant	
Week-14	Review class	

ASSESSMENT STRATEGY

	Components		CO	Blooms Taxonomy	
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C3, C4, C6	
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C3, C4	
	Mid term	10%	CO3	C5	
Final Examination		60%	CO1-CO4	C3, C4,C5, C6	
	Total Marks	100%			

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. P. Kotler, K. L. Keller, *Marketing Management*, 15th ed., Pearson, 2016
- 2. D. H. Besterfield, G. Besterfield, *Total Quality Management*, 3rd ed,. Prentice Hall, 2002
- **3.** J. Liker, *The Toyota Way: 14 Management Principles from the World's Greatest Manufacturer*, 1st ed., McGraw-Hill Education, 2004

REFERENCE SITE

1.2 **Elective Courses**

Level-4, Term-I or Term-II

	COURSE INFORMATION								
Course Code	: NE 405		Lecture Conta	act Hours	:	3.00			
Course Title	: Nuclear Chemical Engineering and	Corrosion	Credit Hours		:	3.00			
	PRE-REQUISITE								
	NE 251 and NE 409								
	CURRICULUM STRUCTURE								
	Outcome Based Education (OBE)								
	SYNOPSIS/RATIONALE								
	The course is designed to learn and familiarize with different radiochemical process in nuclear fuel cycle and effect of corrosions in nuclear power applications.								
	OBJECTIVES								
	 To introduce the important role of radiochemical processes in different stages of nuclear fuel cycle (from front end to back end) and corrosion effects in nuclear power applications. To explain different radiochemical processes for reprocessing and producing radioisotopes by solvent extraction method, ion exchange method, The Purex process, Conversion of radioactive wastes. To familiarize about the Corrosion kinetics and different types of Aqueous and Non-aqueous corrosion in nuclear power applications. To discuss about the various effects of corrosion, corrosion monitoring and control in nuclear power applications. 								
	LEARNING OUTCOMES								
	Upon completion of the course, the st	tudents will be a	able to						
	 Understand the important role of radiochemical processes in different stages of nuclear fue cycle (from front end to back end) and corrosion effects in nuclear power applications. Explain principles of solvent extraction method, ion exchange method, Radiochemica processes for reprocessing irradiated fuel, The Purex process, Conversion of radioactive wastes. Analyze the Corrosion kinetics and different types of Aqueous and Non-aqueous corrosion in nuclear power applications Evaluate the effects of corrosion, corrosion monitoring and control in nuclear power applications. 								
	COURSE OUTCOMES & GENER								
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	CP CA	KP	Assessment Methods			
CO1	Understand the important role of radiochemical processes in different stages of nuclear fuel cycle (from front end to back end) and corrosion effects in nuclear power applications.	PO1	C2		1	T, F			
CO2	Explain principles of solvent								

	reprocessing irradiated fuel, The Purex process, Conversion of radioactive wastes.						
CO3	Analyze the Corrosion kinetics and different types of Aqueous and Non-aqueous corrosion in nuclear power applications	PO2	C4	-	-	2	MT, F
CO4	Evaluate the effects of corrosion, corrosion monitoring and control in nuclear power applications.	PO2	C5	-	-	3	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR - Project ; Q - Quiz; ASG - Assignment; Pr - Presentation; R - Report; F - Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Basic chemical concepts regarding chemical thermodynamics and kinetics, technology applied and newly developed for nuclear fuel cycle, Fuel-Cycle material analysis, characteristics and analysis of nuclear spent fuels, Principles of solvent extraction extensively for purifying uranium, Properties of Irradiated Fuel and Other Reactor Materials, Radiochemical processes for reprocessing irradiated fuel, fundamentals of nuclear water technology and isotope separation methods, chemical effects induced by nuclear reactions.

Radiation damage induced core material property change, water or liquid metal side corrosion, corrosion in nuclear systems and design, Corrosion kinetics, Aqueous and Non-aqueous corrosion in nuclear power applications, Corrosion monitoring and control in nuclear power applications. Diffusion and reaction of fission products, structural stability of metal or nonmetallic materials, radiation hardening or embrittlement and swelling, lattice defect interaction with energetic neutron, the chemical analysis using radiotracers, the chemistry of transuranic elements, scaling.

SKILL MAPPING(CO-PO MAPPING)

No	Course Learning Outcome			P	ROC	3RA	AM (OUT	COM	1ES	(PO)		
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understand the important role of radiochemical processes in different stages of nuclear fuel cycle (from front end to back end) and corrosion effects in nuclear power applications.	3											
CO2	Explain principles of solvent extraction method, Radiochemical processes for reprocessing irradiated fuel, The Purex process, Conversion of radioactive wastes.		3										
CO3	Analyze the Corrosion kinetics and different types of Aqueous and Non-aqueous corrosion in nuclear power applications.		3										
CO4	Evaluate the effects of corrosion, corrosion monitoring and control in nuclear power applications.		3										

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	In order to understand the important role of radiochemical processes in different stages of nuclear fuel cycle (from front end to back end) and corrosion effects in nuclear power applications, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to applied.
CO2-PO2	3	In order to explain principles of solvent extraction method, Radiochemical processes for reprocessing irradiated fuel, The Purex process, Conversion of radioactive wastes, , identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO3-PO2	3	In order to analyze the Corrosion kinetics and different types of Aqueous and Non-aqueous corrosion in nuclear power applications, , identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO4-PO2	2	In order to evaluate the effects of corrosion, corrosion monitoring and control in nuclear power applications, , identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Basic chemical concepts regarding chemical thermodynamics and kinetics,	Class Test 1, Final
Week-2	Technology applied and newly developed for nuclear fuel cycle, Fuel-Cycle material analysis,	Exam

Week-3	Characteristics and analysis of nuclear spent fuels, Isotope separation methods,	
Week-4	Principles of solvent extraction extensively for purifying uranium,	
Week-5	Properties of Irradiated Fuel and Other Reactor Materials, Radiochemical processes for reprocessing irradiated fuel,	Class Test 2, Final
Week-6	The Purex process, fission products, and actinide,	Exam
Week-7	Fundamentals of nuclear water technology, chemical effects induced by nuclear reactions,	
Week-8	Radiation damage induced core material property change, radiation hardening or embrittlement and swelling are studied and analyzed in terms of lattice defect interaction with energetic neutron,	Mid
Week-9	Faraday's laws of electrolysis and its application in determining the corrosion rate in metal and alloys, Corrosion Kinetics	Term, Final Exam
Week-10	Aqueous corrosion in nuclear power applications: fundamental science, materials and mechanisms	Exam
Week-11	Irradiation assisted corrosion and stress corrosion cracking (IAC/IASCC) in nuclear reactor systems and components	
Week-12	Electrochemical techniques for monitoring and controlling corrosion in water-cooled nuclear reactor systems,	- Class Test
Week-13	the chemical analysis using radiotracers, Diffusion and reaction of fission products, structural stability of metal or nonmetallic materials,	3, Final Exam
Week-14	Lifetime prediction techniques for nuclear power plant systems, Ageing management, Integrity assessment methods and lifetime calculations of reactor pressure vessel, piping and other load-bearing components, the chemistry of transuranic elements, scaling.	Exam

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO4	C2, C5
Assessmen t (40%)	Class Participation and Class attendance	5+5= 10%	CO2	C5
	Mid term	10%	CO3	C4
Final Examination		60%	CO1-CO4	C2, C4, C5
	Total Marks	100%		

 $(CO = Course\ Outcome,\ C = Cognitive\ Domain,\ P = Psychomotor\ Domain,\ A = Affective\ Domain)$

REFERENCE BOOKS

- 1. Dr. Damien Feron, *Nuclear Corrosion Science and Engineering*, 1st Edition, Woodhead Publishing, February 21, 2012
- 2. Zaki Ahmad, *Principles of Corrosion Engineering and Corrosion Control*, 1st Edition, Butterworth-Heinemann, October 2, 2006
- 3. Manson Benedict, *Thomas H. Pig ford, Hans Wolfgang*, Nuclear Chemical Engineering, 2nd Edition, Mcgraw-Hill Book Company, April 1, 1981
- 4. Pierre R. Roberge, Handbook of Corrosion Engineering, 3rd Edition, McGraw-Hill Education, July 8, 2019

REFERENCE SITE		

	COURSE INFORMATION										
Course Code	: NE 407		Lecture Contact Hours : 3.00								
Course Title	: Non-Destructive Testing and Evalua	ation	Credit Hours	: 3.	.00						
	PRE-REQUISITE										
	None										
	CURRICULUM STRUCTURE										
	Outcome Based Education (OBE)										
	SYNOPSIS/RATIONALE										
	The course is designed to learn and familiarize with the basic principles and limitations of different Non-Destructive Tastings (NDT) and their applications in a variety of fields.										
	OBJECTIVES										
	 To understand the basic principle To enable the students to acquire nuclear power plants and a variet To introduce the limitations of di specifications related to non-dest 	knowledge y of other f fferent ND	of the application ields. T methods, technic	s of Nondes	structi						
	LEARNING OUTCOMES										
	Upon completion of the course, the st	tudents will	be able to								
	1. Understand the basic principles o	f various N	ondestructive testi	ng methods							
	2. Explain the techniques, standard	ds and spe	cifications related	to non-des	tructi	ve testing					
	technology.				_						
	3. Analyze the applications of Non-other fields.	-destructive	testing in nuclear	power plant	ts and	a variety of					
	4. Evaluate the associated limitation	ns of differe	ent NDT methods,	techniques a	and co	odes.					
	COURSE OUTCOMES & GENER	RIC SKILL	S								
No.	Course Learning Outcome	Correspond POs	ing Bloom's Taxonomy	CP CA	KP	Assessment Methods					

CO1	Underst various methods	Nondestruc	e principles of tive testing		PO1			(C2		-		-	2	T	T, Q, F	7
CO2	specifica destruct	the techniques, standards and ations related to non-ive testing technology.			PO2	,		(C3		-		-	3	Α	SG, I	ī
CO3	destructi		ions of Non- nuclear power other fields.		PO3			(C4		-		-	2	1	MT, F	1
CO4			l limitations of ds, techniques		PO2	,		(C5		1		-	3		T, F	
	Quiz; A	SG – Assignme	s, CA-Complex ant; Pr – Presenta													t ; Q -	-
	COUR	SE CONTEN	T														
	specific techniq particle codes, s principl radiogra Nuclear	eations related ues, application testing; Basic standards and les, technique aphy; NDT er power plants	principles, tecl to liquid penetrons, limitations cs Of Ultrasonis specifications res, applications, valuation, analy	rant te c, code c Tes elated limitarysis a	sting es, s ting to u atior nd r	g; Ba stanc : pri ltras ns, c	sics lards ncip onic odes	Of s an les, tes	Ma d s tec ting and	gne pec hnic ; Ba ards	tic F ifica ques asics	Partion, ap s Of d sp	cle T is re plica Rad ecifi	estin lated ations iogra icatio	g: pri to n , lim phic' ns re	ncipl nagne itatio Testii lated	es, etic ns, ng: to
							PR	ROG	RA	м (шт	COI	MES	(PO)			1
	No.	Course L	earning Outcom	e	1	2	3	4	5	6	7	8	9	10	11	12	
	CO1		the basic principle ndestructive te		3												
	CO2	and specifica destructive te	techniques, stand tions related to sting technology.	non-		3											
	СОЗ	destructive te	applications of sting in nuclear p rariety of other fie	ower elds.		3											
	CO4	of differen techniques an	ate the associated limitations lifferent NDT methods, ques and codes.			3											
HISTIFICA	(3 – High, 2- Medium, 1-low) ATION FOR CO-PO MAPPING																
Mapping	Corre	esponding of Matching	Instification														
CO1-PO1		2	In order to understand the basic principles of various Non-destructive testing methods, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is applied.														

CO2-PO2	3	In order to explain the techniques, standards and specifications related to non-destructive testing technology, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO3-PO2	3	In order to analyze the applications of Non-destructive testing in nuclear power plants and a variety of other fields, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
CO4-PO2	3	In order to evaluate the associated limitations of different NDT methods, techniques and codes, it is required to create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics						
Week-1	NDT general knowledge						
Week-2	Manufacturing Processes; types discontinuities associated with manufacturing processes	Class Test 1, Final					
Week-3	Basics of Visual Testing - principles, techniques, applications, limitations, codes, standards and specifications related to visual testing	Exam					
Week-4	Basics of Liquid Penetrant Testing: principles, techniques, applications, limitations, codes, standards and specifications related to liquid penetrant testing	Class Test					
Week-5	Basics of Magnetic Particle Testing: principles, techniques, applications	2, Final					
Week-6	Basics of Magnetic Particle Testing: limitations, codes, standards and specifications related to magnetic particle testing	Exam					

Week-7	Basics of Ultrasonic Testing: principles, techniques, applications.	
Week-8	Basics of Ultrasonic Testing: limitations codes, standards and specifications related to ultrasonic testing	Mid
Week-9	Basics of Radiographic Testing: principles, techniques,	Term, Final
Week-10	Basics of Radiographic Testing: applications, limitations,	Exam
Week-11	Basics of Radiographic Testing: codes, standards and specifications related to radiography	
Week-12	NDT evaluation, analysis and report	Class Test 3, Final
Week-13	Applications of Non-destructive testing in Nuclear power plants.	Exam
Week-14	Applications of Non-destructive testing in Nuclear power plants.	

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C2,C3, C5
Assessmen t (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C2, C3
	Mid term	10%	CO3	C4
Fi	nal Examination	60%	CO1-CO4	C2- C5
	Total Marks			

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Paul E. Mix, *Introduction to Nondestructive Testing*: A Training Guide, 2nd Edition, Wiley-Interscienc, 2005
- 2. Chuck Hellier, Rao, *Handbook of Nondestructive Evaluation*, 2nd Edition, Pearson Prentice Hall, June 3, 2005

REFERENCE SITE

	COURSE INFORMATION		
Course Code Course Title	: NE 413 : Medical Applications of Nuclear Technology and Radiation Imaging	Lecture Contact Hours Credit Hours	: 3.00 : 3.00

	PRE-REQUISITE									
	NE 301									
		CURRICULUM STRUCTURE								
	Outcome Based Education (OBE)									
	SYNOPSIS/RATIONALE									
	The course is designed to learn and f radiation imaging in different medical		the applicatio	ns of r	nuclea	r techi	nology and			
	OBJECTIVES									
	 To be familiar with principles of To apply this knowledge to the pimage quality To understand the construction, protection and quality control To enable the students to acquire radiographic and fluoroscopic ed 	oroduction of rad operation of ima knowledge abo	liotracers, rad aging and product the constru	liograp cessing action a	h and g equi _l	the as	, radiation			
	LEARNING OUTCOMES	in pinent, rudion	nerupy proces	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
	 Define and apply the basic properties of radiotracers used for nuclear medicine and Understand clinical applications of different radiation imaging methods. Explain the processes related to production and distribution of radiotracers within human body and different types of medical imaging modalities (CT, SPECT and PET). Analyze the evolution of ultrasonic and radiation imaging technologies in clinical applications. Evaluate different Nuclear medicine technologies associated with Radiation therapy 									
	processes (both external and int		ıpy).							
	COURSE OUTCOMES & GENER	RIC SKILLS								
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods			
CO1	Define and apply the basic properties of radiotracers used for nuclear medicine and Understand clinical applications of different radiation imaging methods.	PO1	C1, C3	-	-	-	T, F			
CO2	Explain the processes related to production and distribution of radiotracers within human body and different types of medical imaging modalities (CT, SPECT and PET).	PO2	C5	-	-	-	Q, ASG, F			
CO3	Analyze the evolution of ultrasonic and radiation imaging technologies in clinical applications.	PO2	C4	-	-	1	MT, F			
CO4	Evaluate different Nuclear medicine technologies associated with Radiation therapy processes (both external and internal radio therapy).	PO6	C5	-	-	3	T, F			
	(CP- Complex Problems, CA-Complex Quiz; ASG – Assignment; Pr – Presenta									

Nuclear medicine technology: introduction, Radiopharmaceuticals, radiopharmaceutical dosimetry, Properties of radiotracers for nuclear medicine, production of radioisotopes, radioisotope generators, The technetium generator, The distribution of technetium-based radiotracers within the body, Radiation therapy: External beam therapy, Brachytherapy

Medical imaging modalities, Medical imaging before x-rays, X-radiography, Radioisotopes gamma camera, Computed tomography (CT), Single photon emission computed tomography (SPECT), Data processing in SPECT/CT, Clinical applications of SPECT and SPECT/CT, Positron emission tomography (PET), Clinical applications of planar scintigraphy, Radiotracers used for PET/CT, Mammography.

Ultrasound, Sonar and other early applications of acoustics, basic principles of ultrasound imaging, Evolution of ultrasound technology and clinical applications, Magnetic resonance imaging, Early use of nuclear magnetic resonance (NMR) spectroscopy, Principles of NMR and MRI, Evolution of magnetic resonance imaging (MRI) technology and clinical applications, development and applications of functional MRI.

SKILL MAPPING (CO-PO MAPPING)

NI.	Carras I agenina Outage	PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Define and apply the basic properties of radiotracers used for nuclear medicine and Understand clinical applications of different radiation imaging methods.	2											
CO2	Explain the processes related to production and distribution of radiotracers within human body and different types of medical imaging modalities (CT, SPECT and PET).		3										
CO3	Analyze the evolution of ultrasonic and radiation imaging technologies in clinical applications.		3										
CO4	Evaluate different Nuclear medicine technologies associated with Radiation therapy processes (both external and internal radio therapy).						3						

 $\overline{(3-\text{High, 2- Medium, 1-low)}}$

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	2	In order to understand the basic properties of radiotracers used for nuclear medicine and clinical applications of different radiation imaging methods, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is applied.
CO2-PO2	3	In order to explain the processes related to production and distribution of radiotracers within human body and different types of medical imaging modalities (CT, SPECT and PET), identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required

CO3-PO2	3	In order to analyze the evolution of ultrasonic and radiation imaging technologies in clinical applications, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO4-PO6	3	In order to evaluate different Nuclear medicine technologies associated with Radiation therapy processes (both external and internal radio therapy), application of reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems is required.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement
	(hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics			
Week-1	Nuclear medicine technology: introduction, Radiotracer, Properties of radiotracers for nuclear medicine, radiotracer half-life, Radiopharmaceuticals	Class Test		
Week-2	Radiopharmaceutical dosimetry, Radionuclide generators, The technetium generator, The distribution of technetium-based radiotracers within the body	1, Final Exam		
Week-3	Radiation therapy: External beam therapy (I)	Lam		
Week-4	Radiation therapy: External beam therapy (II)			
Week-5	Radiation therapy: External beam therapy (III)	Class Test 2, Final		
Week-6	Radiation therapy: Brachytherapy (I)			
Week-7	Radiation therapy: Brachytherapy (II)			
Week-8	Radiation therapy: Brachytherapy (III)			

Week-9	Medical imaging modalities, Medical imaging before x-rays, X-radiography, Radioisotopes gamma camera	Mid Term
Week-10	Computed tomography (CT), Single photon emission computed tomography (SPECT), Data processing in SPECT/CT, Clinical applications of SPECT and SPECT/CT	, Final Exam
Week-11	Positron emission tomography (PET), Clinical applications of planar scintigraphy, Radiotracers used for PET/CT	
Week-12	Ultrasound, Sonar and other early applications of acoustics, basic principles of ultrasound imaging, Evolution of ultrasound technology and clinical applications	Class Test
Week-13	Magnetic resonance imaging, Early use of nuclear magnetic resonance (NMR) spectroscopy, Principles of NMR and MRI	3 , Final Exam
Week-14	Evolution of magnetic resonance imaging (MRI) technology and clinical applications, development and applications of functional MRI.	

ASSESSMENT STRATEGY

Components		Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C1, C3, C5
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2	C1, C3,C5
	Mid term	10%	CO3	C4
Fi	inal Examination	60%	CO1-CO4	C1, C3, C4, C5
	Total Marks			

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. W. R. Hendee, E. R. Ritenour, *Medical Imaging Physics*, 4th ed., John Wiley and Sons, 2002
- 2. E. B. Podgorsak, Ervin B. *Radiation Physics for Medical Physicists*, 3rd ed., Springer International Publishing, 2016
- 3. F. M.Khan, J. P. Gibbons, *Physics of Radiation Therapy*, 5th ed., Lippincott Williams & Wilkins, 2014
- 4. S. Webb, The Physics of Medical Imaging, CRC Press, 1988
- 5. D. Volterrani, P. A. Erba, I. Carriò, H. W. Strauss, G. Mariani, *Nuclear Medicine Textbook*, *Methodology and Clinical Applications*, Springer International Publishing, 2019

REFERENCE SITE

	COURSE INFORMATION		
Course Code Course Title	: NE 431 : Power System Engineering and Grid Interface with Nuclear Power Plants	Lecture Contact Hours Credit Hours	: 3.00 : 3.00

	PRE-REQUISITE						
	EECE 119, EECE 221						
	*	CURRICULUM STRUCTURE					
	Outcome Based Education (OBE)						
	SYNOPSIS/RATIONALE	·					
	The course is designed to learn and fa reaction and its technological constra			nental	proces	ses rel	ated to fusion
	OBJECTIVES						
	 To know about the electrical poven. To understand the load curve. To understand power system produced. To understand power grid. 	•	oad character	istics.			
	LEARNING OUTCOMES						
	Upon completion of the course, the s	students will be a	ible to				
	 Understand the role of Electrical Power System and Power system protection units. Explain the load curves, protective schemes and Grid Systems. Analyze the working principle of power system protection and grid stability. Evaluate the grid performance synchronization, and stability after interfacing with Nuclear power plant 						
	COURSE OUTCOMES & GENER	RIC SKILLS					
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Understand the role of Electrical Power System and Power system protection units.	PO 1	C2	-	-	3	T, F, Q
CO2	Explain the load curves, protective schemes and Grid Systems.	PO 2	C5	-	-	2	MT, F
CO3	Analyze the working principle of power system protection and grid stability.	PO 2	C4	1	1	4	ASG, F
CO4	Evaluate the grid performance synchronization, and stability after interfacing with Nuclear power plant.	PO 10	C5	1	1	5	T, F, Pr
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)						
	COURSE CONTENT						
	Introduction Basics of nuclear p quality, and reliability), power transists system and power requirements in N Power factor Improvement Power factor improvement equipment, Calca Network representation Single line a calculation. Causes of station blacko Load curves Demand factor, div factor, capacity factor and plant factor	mission and district of the communication of power and reactance district and their remersity factor, load	ribution syste nication Equi or triangle, Po r factor correc- ngram of pow edies	ms, en pment wer fa ctions er sys	nerger used ctor in tem, P	in grid nprove	wer supply I systems ement, Power t system of

	Grid system and interfacing with NPP Typical layout of a substation, switch gear,															
			and busbars, Sag, T													
		phenomenon and insulation coordination. Circuit breakers & Relays, Over voltage and Lightening														
	Protecti Stabilit		nt transformers: CT and equation, power													ino
			solution of swing													
			ole AC transmission s													
	SKILL	MAPPING	(CO-PO MAPPING))												
	No.	Course L	earning Outcome	1	2	P 3	ROC 4	3RA 5		<u>7</u>	COM 8	1ES (PO) 10	11	12	
			the role of Electrical	1		3	4	3	6	/	0	9	10	11	12	
	CO1		m and Power system	3												
		protection un														
	CO2		oad curves, protective Grid Systems.		3											
			working principle of													
	CO3	power system stability.	power system protection and grid													
		Evaluate th	e grid performance													
	CO4	synchronization, and stability after interfacing with Nuclear power											3			
		plant.	with Nuclear power													
		h, 2- Medium,		•			•				•					
JUSTIFICAT	1		IAPPING													
Mapping		esponding of Matching				J	usti	fica	tion	1						
			In order to understan													
CO1-PO1		3	protection units the fundamentals and an													
			engineering problems	is to	app]	lied.									-	
			In order to explain													
CO2-PO2		3	identification, formula problems reaching sul													
			natural sciences and e	ngin	eerin	g sci	ence	s ar	e req	uire	d.					
			In order to analyze t													_
CO3-PO2		3	stability it is required													
CO3-1 O2		3	design systems, components or processes that meet specified needs with appropria consideration for public health and safety, cultural, societal, and environment													
			considerations.													
	In order to evaluate the grid stability performance it is required to comm															
CO4-PO10		3	effectively on complex engineering activities with the engineering community ar with society at large, such as being able to comprehend and write effective report													
			and design documentation, make effective presentations, and give and receive clear instructions													
TEACHING	LEARN	ING STRAT														
Teaching and	Learning	Activities											I	Engag	gemer	nt
	(hours)															

42

Face-to-Face Learning Lecture

Practical / Tutorial / Studio Student-Centered Learning

Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks					
Week-1	Basics of nuclear power generation from NPPs, power requirements (stability, quality, and reliability)	Class Test					
Week-2	Power transmission and distribution systems, emergency power supply system and power requirements in NPP and Communication Equipment used in grid systems	1, Final Exam					
Week-3	Power factor Power triangle Power factor improvement Power factor						
Week-4	Calculation of power factor corrections						
Week-5	Single line and reactance diagram of power system, Per unit system of calculation. Causes of station blackout and their remedies	Mid Term, Final Exam					
Week-6	Demand factor, diversity factor, load duration curves, energy load curve						
Week-7	load factor, capacity factor and plant factor.						
Week-8	Typical layout of a substation, switch gear, Transmission cables and busbars, Sag, Transmission tower,	Class Test					
Week-9	Corona effect and Over-voltage phenomenon and insulation coordination	2, Final Exam					
Week-10	Circuit breakers & Relays,	Exam					
Week-11	Over voltage and Lightening Protection, Instrument transformers: CT and PT						
Week-12	Swing equation, power angle equation, equal area criterion, multi-machine system, step by step solution of swing equation.						
Week-13	Factors affecting stability: Reactive power compensation Flexible AC						
Week-14	Symmetrical and unsymmetrical fault, Review						

ASSESSMENT STRATEGY

Compo	nents	Grading	CO	Blooms Taxonomy
	Class Test	20%	CO 1, CO3, CO4	C2, C4, C5

Continuous Assessment	Class Participation	5%+5% (attnd)	CO 1, CO3	C2, C4
(40%)	Mid term	10%	CO 2	C5
Final	Exam	60%	CO 1-4	C2, C4, C5
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Sunil S. Rao, Switchgear and Protection, 13th Edition, India, Khanna Publishers, 2008
- 2. Chunikhin M. Zhavoronkov, High Voltage switch gear Analysis and Design, Moscow, Mir publishers, 1989
- 3. S. Chand & V.k.mehta and Rohit Mehta, *Principle of Power Systems: Principles of Power Systems*, 2nd Edition, India, 2020
- 4. William D Stevenson, Elements of Power System Analysis, 4th Edition, Mc Graw Hill Asia,1982

REE	RRE	'NCE	SITE

	COURSE INFORMATION						
Course Code	: NE 433	Lecture Contact Hours : 3.00					
Course Title	: Fundamentals of Fusion Engineering Credit Hours : 3.00						
	PRE-REQUISITE		·				
	NE 105						
	CURRICULUM STRUCTURE						
	Outcome Based Education (OBE)						
	SYNOPSIS/RATIONALE						
	The course is designed to learn and familiarize the different fundamental processes related to fusion reaction and its technological constrains and applications.						
	OBJECTIVES						
	 To familiarize the students about the role of reaction and thermonuclear conditions of full. To explain the different physical processe reaction rate, Lawson criteria fusion power magnetic fusion reactor. To introduce the students about different STELLATOR concept, Blanket concept of To discuss about different technological conthe critical fusion reactor design parameters 	asion reaction. s related to fusion reaction: density and radiation loses Fusion confinement concefusion reactor. astraints related to fusion eng	fusion cross section, the power balance in pt, TOKAMAK and				
	LEARNING OUTCOMES						

	III.	4 14	1.1				
	Upon completion of the course, the s	students will be a	ible to				
	 Understand the role of fusion energy, Fusion reactions, difficulty of fusion reaction and thermonuclear conditions of fusion reaction. Explain the fusion cross section, reaction rate, fusion power generation, Lawson criteria fusion power density and radiation loses, the power balance in magnetic fusion reactor. Analyze the Fusion confinement, TOKAMAK and STELLATOR concept, Blanket concept of fusion reactor. Evaluate plasma wall interactions, radiation damage to material and calculate the critical fusion reactor design parameters. 						
	COURSE OUTCOMES & GENER	RIC SKILLS					
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Understand the role of fusion energy, Fusion reactions, difficulty of fusion reaction and thermonuclear conditions of fusion reaction.	PO1	C2	-	-	2	T, Q, F
CO2	Explain the fusion cross section, reaction rate, fusion power generation, Lawson criteria fusion power density and radiation loses, the power balance in magnetic fusion reactor.	PO2	C5	-	-	3	MT, F
CO3	Analyze the Fusion confinement, TOKAMAK and STELLATOR concept, Blanket concept of fusion reactor.	PO2	C4	-	-	5	ASG, F
CO4	Evaluate plasma wall interactions, radiation damage to material and calculate the critical fusion reactor design parameters.	PO3	C5	-	-	5	T, F
	(CP- Complex Problems, CA-Complex Quiz; ASG – Assignment; Pr – Presenta						
	COURSE CONTENT						
	Introduction Of Fusion Energy, Fusion Reactions, Difficulty Of Fusion Reaction And Thermonuclear Conditions Of Fusion Reaction, Fusion Cross Section, Reaction Rate, Sigma V Parameter Calculation, Fusion Power Generation Process, Fusion Power Density And Radiation Losses, Plasma Ignition And Heating Processes, Lawson Criteria, The Power Balance In Magnetic Fusion Reactor, Fusion Confinement, Inertial And Magnetic Confinement, TOKAMAK and STELLATOR Concept, Blanket Concept Of Fusion Reactor, Design Of Simple Magnetic Fusion Reactors, ITER and Applications Of Fusion Technology.						
	SKILL MAPPING (CO-PO MAPPING)						

No	Course Learning Outcome		PROGRAM OUTCOMES (PO)									
No.	Course Learning Outcome	1 2 3 4 5 6 7 8 9 sion alty and ion 3 3 4 5 6 7 8 9 sion, wer sion ses, etic ent, OR 3	9	10	11	12						
CO1	Understand the role of fusion energy, Fusion reactions, difficulty of fusion reaction and thermonuclear conditions of fusion reaction.											
CO2	Explain the fusion cross section, reaction rate, fusion power generation, Lawson criteria fusion power density and radiation loses, the power balance in magnetic fusion reactor.		3									
CO3	Analyze the Fusion confinement, TOKAMAK and STELLATOR concept, Blanket concept of fusion reactor.				3							
CO4	Evaluate plasma wall interactions, radiation damage to material and calculate the critical fusion reactor design parameters.			2	3							

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING								
Mapping	Corresponding Level of Matching	Justification						
CO1-PO1	3	In order to understand the role of fusion energy, Fusion reactions, difficulty of fusion reaction and thermonuclear conditions of fusion reaction, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is applied.						
CO2-PO2	3	In order to explain the fusion cross section, reaction rate, fusion power generation, Lawson criteria fusion power density and radiation loses, the power balance in magnetic fusion reactor, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.						
CO3-PO2	3	In order to analyze the Fusion confinement, TOKAMAK and STELLATOR concept, Blanket concept of fusion reactor, it is required to conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.						
CO4-PO3	2	In order to evaluate plasma wall interactions, radiation damage to material and calculate the critical fusion reactor design parameters, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.						

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning Lecture Practical / Tutorial / Studio Student-Centered Learning	42 - -
Self-Directed Learning	

Non-face-to-face learning Revision	84 21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Introduction Of Fusion Energy, Fusion Reactions	~-
Week-2	Difficulty Of Fusion Reaction and Thermonuclear Conditions of Fusion Reaction	Class Test 1, Final
Week-3	Fusion Cross Section, Reaction Rate, Sigma V Parameter Calculation	Exam
Week-4	Fusion Power Generation Process, Fusion Power Density and Radiation Losses	
Week-5	Plasma Ignition and Heating Processes	Mid Term,
Week-6	Lawson Criteria	Final Exam
Week-7	The Power Balance in Magnetic Fusion Reactor,	
Week-8	Fusion Confinement	
Week-9	Inertial And Magnetic Confinement	Class Test 2, Final
Week-10	TOKAMAK and STELLATOR Concept	Exam
Week-11	Blanket Concept of Fusion Reactor	
Week-12	Design of Simple Magnetic Fusion Reactors	Class Test
Week-13	ITER and Applications of Fusion Technology	3, Final Exam
Week-14	Review class	Exam

ASSESSMENT STRATEGY

Components		Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO3, CO4	C2, C4, C5
Assessmen t (40%)	Class Participation	5%+5% (attnd)	CO1, CO3	C2,C4
	Mid term	10%	CO2	C5
Final Examination		60%	CO1, CO2, CO3,CO4	C2, C4, C5
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Kenro Miyamoto, Plasma Physics and Controlled Nuclear Fusion, 2005th Edition, Springer 2005
- 2. A A Harms, D R Kingdon, K F Schoepf, *Principles of Fusion Energy: An Introduction to Fusion Energy for Students*, WSPC, 16 Jun. 2000

REI	FFR	ENCE	SITE

	COURSE INFORMATION							
Course Code Course Title	: NE 459 : Computational Fluid Dynamics (CFD)	Lecture Contact Hours Credit Hours	: 3.00 : 3.00					
	PRE-REQUISITE							
	MATH 101, MATH 103 and NE 351							
	CURRICULUM STRUCTURE							
	Outcome Based Education (OBE)							
	SYNOPSIS/RATIONALE							
	The course is designed to learn and familiarize the different fundamental processes related to fusion reaction and its technological constrains and applications.							
	OBJECTIVES							
	 To familiarize students with the basic steps at 2. To develop students' understanding of the cutransfer and basic computational methods in schemes and stability analysis. To develop practical expertise in solving ANSYS CFX. To develop an awareness of limitations of C 	onservation laws applied to fluincluding explicit, implicit meth	id motion and heat hods, discretization hercial CFD code,					

	LEARNING OUTCOMES								
	Upon completion of the course, the s	Upon completion of the course, the students will be able to							
	Understand basic steps and terminology associated with Computational Fluid Dynamics (CFD).								
	2. Explain the conservation laws applied to fluid motion and heat transfer and basic computational methods including explicit, implicit methods, discretisation schemes and stability analysis.								
	3. Analyze variety of computatio problems.	nal techniques	that can be	used	for so	lving	engineering		
	4. Evaluate complex problems rela developing practical skills in using						fic focus on		
	COURSE OUTCOMES & GENER		<u> </u>	<u> </u>					
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods		
CO1	Understand basic steps and terminology associated with Computational Fluid Dynamics (CFD).	PO1	C2	-	-	3	T, Q, F		
CO2	Explain the conservation laws applied to fluid motion and heat transfer and basic computational methods including explicit, implicit methods, discretisation schemes and stability analysis.	PO2	C5	-	-	4	ASG, F		
CO3	Analyze variety of computational techniques that can be used for solving engineering problems.	PO3	C4	-	-	5	T, MT, F		
CO4	Evaluate complex problems related to nuclear system using CFD with the specific focus on developing practical skills in using a commercial CFD package, ANSYS CFX.	PO5	C5	3	-	6	T, F		
	(CP- Complex Problems, CA-Complex Quiz; ASG – Assignment; Pr – Presenta								
	COURSE CONTENT								
	Introduction to CFD, General form of conservation law, Equations of conservation and Navier-Stokes equations, Kinematic properties of fluids, dynamic similarity, Initial and boundary conditions: practical guidelines, Turbulence: basics and introduction, Turbulence: applications of models, Computational methods- introduction to ANSYS CFX and Fluent, Defining a CFD problem, Creating and/or Importing Geometry in Design Modeler, Discretization, Solution Procedures, Post processing — analysis of results, Validation and verification, applications in nuclear systems, Complex geometry with numerical approaches.								
	SKILL MAPPING(CO-PO MAPP	ING)							

NI.	Commo I comino Ontrono			PROGRAM OUTCOMES (PO)									
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	UnderstandbasicstepsandterminologyassociatedwithComputationalFluidDynamics(CFD).	3											
CO2	Explain the conservation laws applied to fluid motion and heat transfer and basic computational methods including explicit, implicit methods, discretisation schemes and stability analysis.		3										
CO3	Analyze variety of computational techniques that can be used for solving engineering problems.			3									
CO4	to nuclear system using CFD with the specific focus on developing practical skills in using a commercial CFD package, ANSYS CFX.					3							

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING							
Mapping	Corresponding Level of Matching						
CO1-PO1	3	In order to understand basic steps and terminology associated with Computational Fluid Dynamics (CFD), the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is applied.					
CO2-PO2	3	In order to explain the conservation laws applied to fluid motion and heat transfer and basic computational methods including explicit, implicit methods, discretisation schemes and stability analysis, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.					
CO3-PO3	3	In order to analyze variety of computational techniques that can be used for solving engineering problems, it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.					
CO4-PO4	3	In order to evaluate complex problems related to nuclear system using CFD with the specific focus on developing practical skills in using a commercial CFD package, ANSYS CFX, it is required to use simulator software					

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning Lecture Practical / Tutorial / Studio Student-Centered Learning	42 - -
Self-Directed Learning	

Non-face-to-face learning Revision	84 21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Introduction to CFD, General form of conservation law	
Week-2	Equations of conservation and Navier-Stokes equations,	Class Test 1, Final Exam
Week-3	Kinematic properties of fluids, dynamic similarity	Exam
Week-4	Initial and boundary conditions: practical guidelines	
Week-5	Turbulence: basics and introduction, Turbulence: applications of models	Class Test
Week-6	Computational methods- introduction to ANSYS CFX and Fluent	2, Final Exam
Week-7	Defining a CFD problem,	
Week-8	Creating and/or Importing Geometry in Design Modeler	MidTown
Week-9	Discretization, Solution Procedures	Mid Term, Final
Week-10	Post processing – analysis of results	Exam
Week-11	Validation and verification	
Week-12	Applications in nuclear systems,	Class Test
Week-13	Complex geometry with numerical approaches	3, Final Exam
Week-14	Review class	

ASSESSMENT STRATEGY

Components		Grading	СО	Blooms Taxonomy
	Class Test/ Assignment (1-3)	20%	CO1, CO3, CO4	C2, C4, C5

	Continuous	Class Participation and	5+5= 10%	CO1, CO3	C2. C4
	Assessmen	Class attendance	3+3- 10%	CO1, CO3	C2, C4
l	t (40%)	Mid term	10%	CO2	C5
	Final Examination		60%	CO1, CO2, CO3, CO4	C2, C4, C5
		Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. J.Y. Tu, G.H. Yeoh, and C. Liu, Computational Fluid Dynamics: A Practical Approach, 3rd Edition, 2018
- 2. H.K. Versteeg and W. Malalasekera, *An introduction to Computational Fluid Dynamics. The Finite Volume Method*, 2nd ed., Pearson, 2007
- 3. J.D. Anderson, Computational Fluid Dynamics, McGraw-Hill Education, 1995
- 4. P.J. Roache, Fundamentals of Computational Fluid Dynamics, Hermosa Pub, 1998
- 5. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, 1980

D	DI DI D	DEA	TOT	CITT
к		KEN	NCE	SITE

	COURSE INFORMATION							
Course Code Course Title	: NE 479 : Radioactive Waste Treatment and Disposal Techniques	Lecture Contact Hours Credit Hours	: 3.00 : 3.00					
	PRE-REQUISITE	PRE-REQUISITE						
	NE 409							
	CURRICULUM STRUCTURE Outcome Based Education (OBE) SYNOPSIS/RATIONALE							
	The course is designed to learn and familiarize with the different processes related to radioacti waste treatment and disposal techniques.							
	OBJECTIVES							
	 To demonstrate advanced knowledge of the general classification of nuclear waste and basic principles of radioactive waste management. To introduce students with various options of nuclear waste disposals and associated phyphenomenon. To develop the analyzing ability of issues associated with finding and selecting a Geolo Disposal Facility, Safeguards aspects and monitoring of a repository To develop the ability to evaluate long-term safety disposal facility for radioactive wast Environmental risk 							
	LEARNING OUTCOMES							

	Upon completion of the course, the s	tudents will be a	able to					
	 Understand the general classification of nuclear waste and the basic principles of radioactive waste management. Explain various options of nuclear waste disposals and associated physical phenomenon. Analyze the issues associated with finding and selecting a Geological Disposal Facility, Safeguards aspects and monitoring of a repository Evaluate long-term safety disposal facility for radioactive waste and Environmental risk assessment COURSE OUTCOMES & GENERIC SKILLS 							
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	КР	Assessment Methods	
CO1	Understand the general classification of nuclear waste and the basic principles of radioactive waste management.	PO1	C2	-	-	3	T, Q, F	
CO2	Explain various options of nuclear waste disposals and associated physical phenomenon.	PO2	C5	-	1	4	ASG, F	
CO3	Analyze the issues associated with finding and selecting a Geological Disposal Facility, Safeguards aspects and monitoring of a repository	PO3	C4	-	-	5	T, MT, F	
CO4	Evaluate long-term safety disposal facility for radioactive waste and Environmental risk assessment	PO4	C5	3	-	6	T, F	
	(CP- Complex Problems, CA-Complex Quiz; ASG – Assignment; Pr – Presenta							
	COURSE CONTENT							
	Introduction to nuclear power, the nuclear fuel cycle and waste generation; spent fuel and reprocessing. The international context of nuclear waste management: laws and regulations; Types of radioactive wastes, Waste treatment: current concepts and future prospects of ILW, HLW & TRU wastes, Storage of the various types of waste, R&D in treatment and storage. Disposal of Nuclear Waste the options, deep geological disposal, The Safety Case concept for geological disposal, Multiple Barriers approaches. The geological / hydro geological and coupled subsurface-EBS R&D areas and issues that need to be addressed in developing a safety case. Geological Disposal Concepts: Hard rock, clays/shales, evaporates, the roles of engineered barriers and the geological barrier, the requirements for subsurface characterization to support safe geological disposal. Key issues associated with finding and selecting a Geological Disposal Facility, Safeguards aspects and monitoring of a repository, Public participation approaches, Assessing the long-term safety of a surface or geological disposal facility for radioactive waste, Environmental risk assessment, the ERICA tool and mixture toxicity.							
	SKILL MAPPING (CO-PO MAPI	PING)						
	No. Course Learning Outcome	1 2	PROGRAM (3 4 5 6		OMES (1 8 9	PO)	11 12	

		Understand the	he general classification													
	CO1	of nuclear wast	e and the basic principles	3												
			waste management.													
	CO2		s and associated physical		3											
		phenomenon.														
			issues associated with													
	CO3	finding and	selecting a Geological lity, Safeguards aspects			3										
		and monitoring	g of a repository													
			g-term safety disposal													
	CO4		adioactive waste and risk assessment				3									
	(3 - High)	h, 2- Medium, 1-l														
JUSTIFICA		OR CO-PO M														
Manaina	Corr	esponding				,	r4•	<u> </u>	4							
Mapping	Level	of Matching				J	usu	HCa	tion	1						
			In order to understand the general classification of nuclear waste and the basic													
CO1-PO1		3	principles of radioactive													
			science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is applied.													
										ar w	aste	disp	osals	and	associ	iated
GOA BOA		In order to Explain various options of nuclear waste disposals and associated physical phenomenon, identification, formulation, research the literature and														
CO2-PO2		3	analyze complex engineering problems, explaining various options of nuclear waste													
			disposals and associat													
			In order to analyze th													
CO3-PO3		3	Disposal Facility, Safeguards aspects and monitoring of a repository, it is required to design solutions for complex engineering problems and design systems,													
003-103		3	components or processes that meet specified needs with appropriate consideration													
				health and safety, cultural, societal, and environmental considerations.												
			In order to evaluate long-term safety disposal facility for radioactive waste and													
COA POA		0	Environmental risk assessment, it is required to conduct investigations of complex													
CO4-PO4		2	problems using research-based knowledge and research methods including design													
			of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.													
TEACHING	LEARN	ING STRAT	EGY													
Teaching and	Learning	Activities											,	Enga	geme	nt
Teaching and	Learning	5 Tienvines											1		ours)	110
	Face-to	-Face Learnin	σ											(
		Lecture	0											۷	12	
	Practical / Tutorial / Studio								-							
	Student-Centered Learning								-							
	Self-Di	rected Learnin	•	_	_	_	_	_	_	_	_	_		· <u> </u>	· <u> </u>	· <u>-</u>
			face learning												34	
	_	Revision													21	
	Formal	Assessment													2	
		Continuous A	Assessment												2	
		Mid-Term	action												1	

Total TEACHING METHODOLOGY

Final Examination

3

153

COURSE SO	Discussion, Co-operative and Collaborative Method, Problem Based Method CHEDULE				
Weeks	Topics	Remarks			
Week-1	Introduction to nuclear power, the nuclear fuel cycle and waste generation; spent fuel and reprocessing, The international context of nuclear waste management: laws and regulations; IAEA, NEA, Euratom, Fukushima.				
Week-2	Types of radioactive waste: operational, reprocessing, decommissioning. Types of waste: ILW, HLW, HAW; TRU waste. Material not yet declared as waste: Spent fuel, Plutonium, Uranium. The concept of the radioactive waste Inventory.	Class Test 1, Final Exam			
Week-3	Waste treatment: ILW current concepts and future prospects (cement grouting, thermal treatment, alternative matrices)				
Week-4	Waste treatment: HLW vitirification and canister storage. Alternative treatments (ceramics, synroc, transmutation), TRU wastes				
Week-5	Storage of the various types of waste: Example stores, on-site storage, decay storage, R&D in treatment and storage.	Class Test			
Week-6	Disposal of Nuclear Waste the options: including near-surface disposal and deep borehole.	2, Final Exam			
Week-7	Deep geological disposal: the concept, the international consensus, variations in overarching approaches to developing Geological Disposal Facilities (GDFs) internationally				
Week-8	The Safety Case concept for geological disposal, Processes requiring consideration, Multiple Barriers approaches.				
Week-9	The geological / hydro geological and coupled subsurface-EBS R&D areas and issues that need to be addressed in developing a safety case.	Mid Term, Final Exam			
Week-10	Geological Disposal Concepts: Hard rock, clays/shales, evaporates.				
Week-11	Geological Disposal Concepts: an analysis of the roles of engineered barriers and the geological barrier. The requirements for subsurface characterization to support safe geological disposal.				
Week-12	Key issues associated with finding and selecting a Geological Disposal Facility: The role of geology and geological information. Principles of screening (national and regional), site identification, site selection and site assessment, both surface and underground.	Class Test 3, Final			
Week-13	Safeguards aspects and monitoring of a repository, Public participation approaches	Exam			
Week-14	Assessing the long-term safety of a surface or geological disposal facility for radioactive waste, Environmental risk assessment, the ERICA tool and mixture toxicity				
ASSESSME	NT STRATEGY				

Components		Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO3, CO4	C2, C4, C5
Assessment (40%)	Class Participation and Class attendance	5%	CO1, CO3	C2, C4

Mid term	15%	CO2	C5
Final Examination	60%	CO1, CO2, CO3, CO4	C2, C4, C5
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. INTERNATIONAL ATOMIC ENERGY AGENCY, Radioactive Waste Management: An IAEA Source Book, IAEA, 1992
- 2. F. Barker, Management of Radioactive Wastes, Thomas Telford Publishing, 1998
- 3. D. R. Wily, The chemistry of nuclear fuel waste deposal, Polytechnic International Press, 2002
- 4. OECD/NEA, *Advanced Nuclear Fuel Cycles and Radioactive Waste Management*, Nuclear Development, OECD Publishing, 2006

P	F	FE	D	ri	V	T	C	П	'n
\mathbf{r}	107	עוויי	\mathbf{r}	\mathbf{r}_{I}	ZU	עוש	1 (3)	ш	o d

	COURSE INFORMATION						
Course Code Course Title	: NE 489 : Nuclear Power Project: Construction and Decommissioning Strategies	Lecture Contact Hours Credit Hours	: 3.00 : 3.00				
	PRE-REQUISITE						
	NE 101						
	CURRICULUM STRUCTURE						
	Outcome Based Education (OBE)						
	SYNOPSIS/RATIONALE						
	The course is designed to learn and familiarize with the processes associated with a nuclear power project and its decommissioning policies and strategies.						
	OBJECTIVES						
	 To familiarize the students about the different stages of a nuclear power project construction and decommissioning. To introduce the different strategies related nuclear power project Construction Management at distinct phases (preparatory, after concrete pouring and commissioning). To introduce the decommissioning polices, strategies and cost analysis. To discuss about the subsequent radiological risk associated with decommission and quality assurance methods in nuclear project management. 						
	LEARNING OUTCOMES						

	Upon completion of the course, the s	tudents will be a	lble to						
	 Understand the different stages of a nuclear power project construction and decommissioning. Explain the different strategies related nuclear power project Management at distinct phases (preparatory, after concrete pouring and commissioning). 								
	3. Analyze the subsequent radiolog methods in nuclear project mana	3. Analyze the subsequent radiological risk associated with decommission and quality assurance methods in nuclear project management.							
	4. Evaluate polices, strategies and course outcomes & General	•							
		Corresponding	Bloom's	l		l	Assessment		
No.	Course Learning Outcome	POs	Taxonomy	CP	CA	KP	Methods		
CO1	Understand the different stages of a nuclear power project construction and decommissioning.	PO1	C2	-	-	3	T, Q, F		
CO2	Explain the different strategies related nuclear power project Management at distinct phases (preparatory, after concrete pouring and commissioning).	PO11	C5	-	-	4	ASG, F		
CO3	Analyze the subsequent radiological risk associated with decommission and quality assurance methods in nuclear project management.	PO7, PO11	C4	-	-	5	T, MT, F		
CO4	Evaluate polices, strategies and cost analysis.	PO6, PO7	C5	3	-	6	T, F		
	(CP- Complex Problems, CA-Complex Quiz; ASG – Assignment; Pr – Presenta COURSE CONTENT								
	Nuclear Project Management Introduction to Nuclear Project Mana Infrastructure development and police	•	r Power devel	opme	nt strat	egy, N	Nuclear Power		
	Nuclear Power Project: Construction Introduction, Construction Management: Preparatory Phase, Construction Management: Construction Phase (After Concrete Pouring), Construction Management: Commissioning Phase, Construction Management Issues and Lessons Learned.								
	Construction Management Issues and Lessons Learned. Nuclear Power Project: Decommissioning Strategies Decommissioning Policies and Strategies, Decommissioning Cost Estimating and Funding Approaches, Decommissioning Cost Data, Management for Active Phases of Decommissioning, Decommissioning Planning and Approval, Quality Assurance, Waste Management, Safety, Health And Environmental Protection.								

SKILL MAPPING (CO-PO MAPPING)

NI.	Commo I comino Ontrono	PROGRAM OUTCOMES (Po				(PO)							
No.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Understand the different stages of a nuclear power project construction and decommissioning.	2											
CO2	Explain the different strategies related nuclear power project Management at distinct phases (preparatory, after concrete pouring and commissioning).											3	
CO3	Analyze the subsequent radiological risk associated with decommission and quality assurance methods in nuclear project management.							3				2	
CO4	Evaluate polices, strategies and cost analysis.						2	2					

(3 – High, 2- Medium, 1-low)

3 3 2 2 2 2 2 2 1 2 1 2	HONTOR COTON	
Mapping	Corresponding Level of Matching	Justification
CO1-PO1	2	In order to understand the different stages of a nuclear power project construction and decommissioning, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is applied.
CO2-PO11	3	In order to explain the different strategies related nuclear power project Construction Management at distinct phases (preparatory, after concrete pouring and commissioning), it is needed to function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
CO3-PO7	3	In order to understand the impact of professional engineering solutions towards society and the environment, and demonstrate knowledge of and the need for sustainable development in nuclear technology, quality assurance methods in nuclear project management is required.
CO3-PO11	2	In order to analyze the subsequent radiological risk associated with decommission and quality assurance methods in nuclear project management, it is needed to function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
CO4-PO6	2	In order to assess societal, health, safety, legal and cultural issues with the engineers and society relevant to professional nuclear engineering practice, evaluation of construction & decommissioning polices, strategies and cost analysis are required.
CO4-PO7	3	In order to evaluate construction & decommissioning polices, strategies and cost analysis, it is required to understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning Lecture	42
Practical / Tutorial / Studio Student-Centered Learning	-

Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Introduction to Nuclear Project Management,	
Week-2	Nuclear Power development strategy, Nuclear Power Infrastructure development policies	Class Test 1, Final Exam
Week-3	Construction Management — Preparatory Phase: Main contract management, Licensing management, Project risk management,	Exam
Week-4	Coordination of construction activities, Categorization of construction work packages, Project scheduling and control during the construction phase	
Week-5	Construction Management — Construction Phase (After Concrete Pouring): Quality planning and management, Construction inspection, Safety and environmental management system, Developing a human resources plan	Class Test
Week-6	Construction infrastructure development, Security Construction Management — Construction Phase (After Concrete Pouring): Overview of organizations (site and HQ) and main activities during construction	2, Final Exam
Week-7	Construction Management — Commissioning Phase: Construction completion process, Turnover processes, preserving reference data, material conditions, keep test material	
Week-8	Construction Management Issues and Lessons Learned: Construction management issues, Country specific lessons learned	
Week-9	Decommissioning policy, Decommissioning strategies, Decommissioning cost estimating and funding approaches: Elements of decommissioning cost estimates, Approaches for estimating costs, Funding aspects	Mid Term, Final Exam
Week-10	Decommissioning cost data: Reactor types and sizes, Reactor history and decommissioning schedule, Cost data reporting and conversion, Summary presentation of cost data	
Week-11	Management for Active Phases of Decommissioning	
Week-12	Decommissioning Planning and Approval, Quality Assurance	Class Test
Week-13	Waste Management: Waste management strategy, Waste management arrangements	3, Final Exam
Week-14	Safety, Health And Environmental Protection: Instrument used to characterize radiation levels within decommissioning environment, Environmental Impact Assessment (EIA)	

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO3, CO4	C2, C4, C5
Assessment (40%)	Class Participation and Class attendance	5%	CO1, CO3	C2, C4
	Mid term	15%	CO2	C5
Final Examination		60%	CO1, CO2, CO3, CO4	C2, C4, C5
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Project Management In Nuclear Power Plant Construction: Guidelines And Experience, Iaea Nuclear Energy Series No. Np-T-2.7
- 2. Nuclear Power Project Management A Guidebook, Iaea Technical Reports Series No. 279
- 3. Decommissioning Nuclear Power Plants: Policies, Strategies And Costs, Oecd 2003
- 4. Organization And Management For Decommissioning Of Large Nuclear Facilities, Technical Reports Series No. 399
- 5. Decommissioning Of Nuclear Power Plants, Research Reactors And Other Nuclear Fuel Cycle Facilities, Specific Safety Guide No. Ssg-47

REFERENCE SITE

	COURSE INFORMATION								
Course Code Course Title	: NE 491 : Fundamentals of Plasma Engineering	Lecture Contact Hours : 3.00 Credit Hours : 3.00							
Course Title	PRE-REQUISITE	Credit Hours . 3.00							
	PHY 137, NE 105								
	CURRICULUM STRUCTURE								
	Outcome Based Education (OBE)								
	SYNOPSIS/RATIONALE								
	The course is designed to learn and familiarize with the fundamental physics of plasmas and their applications.								
	OBJECTIVES								
	 To make known the students about the basic plasma parameters, under what conditions an ionized gas consisting of charged particles (electrons and ions) can be treated as plasma. To explain different approaches to explain plasma phenomena, the single particle approach, fluid approach and kinetic statistical approach to describe different plasma phenomena. 								

- 3. To discuss about the stability of plasma equilibrium and plasma instabilities of charged particles moving in electric and magnetic fields that are either uniform or very slowly in space and time.
- 4. To introduce students about the conditions for plasma to be in a state of a perfect or a non-perfect thermodynamic equilibrium and formulate mathematical tool to describe waves in plasma, as a continuous media.

LEARNING OUTCOMES

Upon completion of the course, the students will be able to

- 1. Apply the principal models of the nuclear study and radioactivity.
- 2. Analyze the nuclear force, electron scattering, neutrino hypothesis and deuteron properties.
- 3. Explain the spontaneous decay of nuclei, nuclear reactions, fission and fusion process.
- 4. Evaluate the nuclear force, nuclear reactions methods and reaction theory.

	COURSE OUTCOMES & GENERIC SKILLS										
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods				
CO1	Understand the basic plasma parameters, under what conditions an ionized gas consisting of charged particles (electrons and ions) can be treated as plasma	PO1	C2	-	-	3	T, Q, F				
CO2	Explain the single particle approach, fluid approach and kinetic statistical approach to describe different plasma phenomena	PO2	C5	-	-	4	ASG, F				
CO3	Analyze the stability of this equilibrium and account for the most important plasma instabilities the velocities, both fast and slow (drift velocities), of charged particles moving in electric and magnetic fields that are either uniform or very slowly in space and time	PO2	C4	-	-	5	T, MT, F				
CO4	Evaluate the conditions for plasma to be in a state of a perfect or a non-perfect thermodynamic equilibrium and formulate mathematical tool to describe waves in plasma, as a continuous media.	PO2	C5	3	-	6	T, F				

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

COURSE CONTENT

Basic plasma properties and collective behaviour, Motion of charged particles in magnetic fields, plasma confinement schemes, Collisions in Plasmas, Plasma Models, MHD models, , two-fluid hydrodynamic plasma models, the Vlasov plasma model, kinetic theory of plasma, the relation between kinetic and fluid models, wave propagation in a magnetic field, Waves and Instabilities ,simple equilibrium and stability analysis, electron plasma waves and landau damping, applications of plasma.

	SKILL	MAPPING (CO-PO MAPPING)												
	No.	Course I coming Outcome	PROGRAM OUTCOMES (PO)											
	NO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	CO1	Understand the basic plasma parameters, under what conditions an ionized gas consisting of charged particles (electrons and ions) can be treated as plasma	3											
	CO2	Explain the single particle approach, fluid approach and kinetic statistical approach to describe different plasma phenomena		3										
	CO3	Analyze the stability of this equilibrium and account for the most important plasma instabilities the velocities, both fast and slow (drift velocities), of charged particles moving in electric and magnetic fields that are either uniform or very slowly in space and time		3										
	CO4	Evaluate the conditions for plasma to be in a state of a perfect or a non-perfect thermodynamic equilibrium and formulate mathematical tool to describe waves in plasma, as a continuous media.		3										

(3 – High, 2- Medium, 1-low)

	(3 – High, 2- Medium,	, and the second
JUSTIFICAT	TON FOR CO-PO M	APPING
Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	In order to understand the basic plasma parameters, under what conditions an ionized gas consisting of charged particles (electrons and ions) can be treated as plasma the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to applied.
CO2-PO2	3	In order to explain the single particle approach, fluid approach and kinetic statistical approach to describe different plasma phenomena identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO3-PO2	3	In order to analyze the stability of this equilibrium and account for the most important plasma instabilities the velocities, both fast and slow (drift velocities), of charged particles moving in electric and magnetic fields that are either uniform or very slowly in space and time identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required.
CO4-PO2	3	In order to evaluate the conditions for plasma to be in a state of a perfect or a non- perfect thermodynamic equilibrium and formulate mathematical tool to describe waves in plasma, as a continuous media, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated

		conclusions using first principles of mathematics, natural sciences and engineering				
	sciences are required.					
TEACHING I	TEACHING LEARNING STRATEGY					
Teaching and L	Engagement					
		(hours)				
	Face-to-Face Learning					
	Lecture	42				
	Practical / Tutorial / Studio	-				
	Student-Centered Learning	-				
	Self-Directed Learning					
	Non-face-to-face learning	84				

21

2

3

153

TEACHING METHODOLOGY

Total

Revision

Mid-Term

Continuous Assessment

Final Examination

Formal Assessment

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics		
Week-1	Basic Description of a Plasma • Fundamental Space and Time Scales • Plasma Parameter	- Class Test	
Week-2	Basic Description of a Plasma Plasma Oscillations Debye shielding	1, Final Exam	
Week-3	Motion of charged particles in magnetic fields		
Week-4	Plasma confinement schemes, Collisions in Plasmas		
Week-5	Plasma Models (MHD model)	Class Test 2, Final Exam	
Week-6	Plasma Models (Two-fluid hydrodynamic plasma model)		
Week-7	Plasma Models (The Vlasov plasma model)		
Week-8	Kinetic Theory Of Plasma	Mid	
Week-9	The Relation Between Kinetic And Fluid Models	Term, Final	
Week-10	Plasma Wave , Electron Plasma Waves	Exam	
Week-11	Wave Propagation In A Magnetic Field		

Week-12	Waves And Instabilities	Class Test
Week-13	Simple Equilibrium And Stability Analysis	3, Final
Week-14	Landau Damping, applications of plasma	Exam

ASSESSMENT STRATEGY

Components		Grading	CO	Blooms Taxonomy		
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO3, CO4	C2, C4, C5		
Assessment (40%)	Class Participation and Class attendance	5%	CO1, CO3	C2, C4		
	Mid term	15%	CO2	C5		
Final Examination		60%	CO1, CO2, CO3, CO4	C2, C4, C5		
Total Marks		100%				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Chen, Francis F, Introduction to Plasma Physics, 2nd edition, New York, Springer, 1984
- Goldston, R. J. and P. H. Rutherford, Introduction to Plasma Physics. Philadelphia, PA: IOP Publishing, 1995.
 J. A. Bittencourt, Fundamentals of Plasma Physics, 3rd edition, New York, NY: Springer, 2004

REFERENCE SITE

	COURSE INFORMATION				
Course Code Course Title	: NE 493 : Nuclear Technology for Nonpower Applications	Lecture Contact Hours Credit Hours	: 3.00 : 3.00		
	PRE-REQUISITE				
	None				
	CURRICULUM STRUCTURE				
	Outcome Based Education (OBE)				
	SYNOPSIS/RATIONALE The course is designed to learn and familiarize about nonpower applications of nuclear technology.				
	OBJECTIVES				

- 6. To understand the nuclear techniques in agriculture and different industry.
- 7. To know various methods of nuclear techniques in agriculture and different industry.
- 8. To identify various types of techniques for enhancing food security and safety.
- 9. To evaluate the optimization of dosimetry and dose mapping using ionization radiation.
- 10. To understand the safety and quality assurance through nuclear technique in different industry.

LEARNING OUTCOMES

Upon completion of the course, the students will be able to

- 5. Explain the nuclear techniques in agriculture and different industry.
- 6. Understand different methods of nuclear techniques in agriculture and different industry.
- 7. Analyze the optimization of dosimetry and dose mapping using ionization radiation.
- 8. Evaluate the safety and quality assurance through nuclear technique in different industry.

	COURSE OUTCOMES & GENERIC SKILLS						
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the nuclear techniques in agriculture and different industries.	PO1	C2	-	-	3	T, Q, F
CO2	Understand the food security and food safety by irradiation technique.	PO2	C4	-	-	4	T, ASG, F
CO3	Analyze the optimization of dosimetry and dose mapping using ionization radiation.	PO6	C5	-	ı	5	MT, F
CO4	Evaluate the safety and quality assurance through nuclear technique in different industries.	PO3	C6	1	-	6	Q,T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR - Project ; Q - Quiz; ASG - Assignment; Pr - Presentation; R - Report; F - Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Nuclear Techniques in Agriculture: Use of ionizing radiation in agriculture; Research, Industrial and Ion beam irradiators; Lethal Dose (LD50) test, Dose optimization, Dosimetry and Dose mapping; Genetic modification and new crop varieties through radiation induced mutation; Improving water use efficiency and irrigation scheduling by neutron moisture meter; Controlling pests and diseases; Reducing post-harvest loss agricultural produce, Enhancing food security and food safety by irradiation; Quarantine or phytosanitary treatments; Sterile Insects Technique (SIT); Isotope tracer techniques for soil, water and nutrients management; Isotope Hydrology; Introduction to Isotope Ratio Mass Spectrometry (IRMS); Instrument calibration, safety and quality assurance.

Industrial and others Application: Radiography: X-ray, Gamma, Neutron and Beta; Well logging by sealed gamma and neutron sources; Nucleonic gauging practices for thickness, density and liquid level measurement; Medical product sterilization; Material modification; Radiotracers; Environmental remediation for industry; Instrument calibration, safety and quality assurance.

SKILL MAPPING (CO-PO MAPPING)

N.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
No.		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Explain the nuclear techniques in agriculture and different industries.	2											
CO2	Understand the food security and food safety by irradiation technique.		3										
CO3	Analyze the optimization of dosimetry and dose mapping using ionization radiation.						3						
CO4	Evaluate the safety and quality assurance through nuclear technique in different industries.				3								

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification						
CO1-PO1	2	In order to explain the nuclear technique in agriculture and different industry, the knowledge of radiation science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.						
CO2- PO2	3	In order to understand different methods of nuclear techniques in agriculture and different industry, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated solutions are required.						
CO3-PO6	3	In order to analyze the optimization of dosimetry and dose mapping using ionization radiation., application of reasoning informed by contextual knowledge to a professional engineering practice is required.						
CO4-PO4	3	In order evaluate the safety and quality assurance through nuclear technique in different industry, it is required to conduct investigations of complex problems using the knowledge of radiation science.						

TEACHING LEARNING STRATEGY

Teaching and Learning Activities			
Face-to-Face Learning			
Lecture	42		
Practical / Tutorial / Studio	-		
Student-Centered Learning	-		
Self-Directed Learning			
Non-face-to-face learning	84		
Revision	21		
Formal Assessment			
Continuous Assessment	2		
Mid-Term	1		
Final Examination	3		
Total	153		

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Weeks	Topics	Remarks			
Week-1	Veek-1 Use of ionizing radiation in agriculture; Research, Industrial and Ion beam irradiators				
Week-2	Week-2 Lethal Dose (LD50) test, Dose optimization, Dosimetry and Dose mapping				
Week-3	Genetic modification and new crop varieties through radiation induced mutation				
Week-4	Improving water use efficiency and irrigation scheduling by neutron moisture meter	Class Test			
Week-5	Controlling pests and diseases; Reducing post-harvest loss agricultural produce	2, Final Exam			
Week-6	Enhancing food security and food safety by irradiation	Exam			
Week-7	Quarantine or phytosanitary treatments; Sterile Insects Technique (SIT)				
Week-8	Isotope tracer techniques for soil, water and nutrients management	Mid			
Week-9	Isotope Hydrology	Term, Final			
Week-10	Introduction to Isotope Ratio Mass Spectrometry (IRMS); Instrument calibration, safety and quality assurance	Exam			
Week-11	Radiography: X-ray, Gamma, Neutron and Beta; Well logging by sealed gamma and neutron sources				
Week-12	Nucleonic gauging practices for thickness, density and liquid level measurement	Class Test 3, Final			
Week-13	Medical product sterilization; Material modification; Radiotracers	Exam			
Week-14	Environmental remediation for industry; Instrument calibration, safety and quality assurance				

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO4	C2, C4, C6
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO2, CO4	C2, C4, C6
	Mid term	10%	CO3	C5
I	Final Examination		CO1-CO4	C2, C4, C5, C6
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 3. LaChance, L., Aslam, J. and Langer, C., 1990. Nuclear techniques in agriculture. IAEA Bulletin, 32(3), pp.49-52.
- 4. INTERNATIONAL ATOMIC ENERGY AGENCY, Industrial Applications of Nuclear Energy, IAEA Nuclear Energy Series No. NP-T-4.3, IAEA, Vienna (2017)

REFERENCE SITE

CHAPTER 6

6.1 Courses Offered by Other Departments to NE Students

6.1. a. Department of Science and Humanities

Physics:

Level 1 Term I

COURSE INFORMATION

Course Code	: PHY 137	Lecture Contact Hours	: 3.00

Course Title: Waves and Oscillations, Structure of Credit Hours: 3.00

Matter and Quantum Mechanics

PRE-REQUISITE

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the basics of physics in the fields of waves and oscillations, structure of matter and quantum mechanics. The course will emphasize the basic concepts, theories, and solving quantitative problems that can be applicable in a wide spectrum of engineering disciplines.

OBJECTIVE

- 1. To define the different parameters, concepts, logical and critical thinking with scientific knowledge of waves and oscillations, structure of matter and quantum mechanics.
- 2. To explain the basic theories and laws of waves and oscillations, structure of matter and quantum mechanics.
- 3. To solve numerical and analytical problems regarding waves and oscillations, structure of matter and quantum mechanics.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Correspond	Bloom's	CP	CA	KP	Assessment
	At the and of the course of student	ing POs	Taxonomy				Methods
	At the end of the course, a student						
	should be able to						

CO1	Define different basic laws and parameters in the field of waves and oscillations, structure of matter and modern physics. such as simple harmonic motion, damped oscillations, crystal structure, crystal defects, wave function, etc.	PO1	C1	-	-	1	T, MT, F
CO2	Explain different basic theories in the field of waves and oscillations, structure of matter and modern physics such as the SHM, damped motion, wave motion, Bragg's law, bonding energy, Schrödinger equation, etc.	PO1	C2	-	-	1	T, MT, F
CO3	Solve quantitative problems in the field of waves and oscillations, structure of matter, and modern physics such as SHM, damped motion, wave motion, packing factor, Miller indices, quantum mechanics, etc.	PO1	С3	-	-	2	T, ASG, MT, F

(CP – Complex Problems, CA – Complex Activities, KP – Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, CS – Case study, MT- Mid Term Exam, F – Final Exam)

C1 - Remember	C2 – Understand	C3 - Apply	C4 - Analyze	C5 – Evaluate	C6 – Create

COURSE CONTENT

Waves and Oscillations: Simple Harmonic Motion (SHM) and its properties, differential equation of a SHM and its solution, total energy and average energy of a body executing SHM, simple pendulum, torsional pendulum, spring-mass system, LC oscillatory circuit, two body oscillation and reduced mass, Composition of SHM, Damped oscillations, and its different condition, forced oscillations and its different condition, resonance, Wave motion: expression for a plane progressive wave, differential equation of wave motion, energy density of wave motion, average kinetic and potential energy of wave motion, Stationary wave.

Structure of matter: Crystalline and non-crystalline solids, single crystal and poly-crystal solids, unit cell, crystal systems, co-ordinations number, crystal planes and directions, NaCl and CsCl structure, packing factor, Miller indices, relation between inter-planar spacing and Miller indices, Bragg's law, methods of determination of inter-planar spacing from diffraction patterns; defects in solids: point defects, line defects,

surface defects, bonds in solids, band theory of solids: distinction between metal, semiconductor and insulator, inter-atomic distances, calculation of cohesive and bonding energy.

Quantum mechanics: Origin of quantum theory, wave properties of matter, wave-particle duality, de Broglie's hypothesis, Heisenberg's uncertainty principle and its applications, wave function, operators, eigen value & expectation values, Schrödinger's equations, applications of quantum mechanics: particle in a box, harmonic oscillator, reflection at a step potential, transmission across a potential barrier, tunnel effect, Schrödinger's equation for the Hydrogen atom, quantum numbers, electron spin.

CO-PO MAPPING													
No.	Course Outcome	PROGRAM OUTCOMES (PO)											
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to Define different basic parameters in the field of waves and oscillations, structure of matter, and modern physics—such as periodic motion, simple harmonic motion, undamped oscillations, crystal structure, crystal defects, wave function, etc.	√											
CO2	Be capable to Explain different basic theories in the field of waves and oscillations, structure of matter, and modern physics such as the wave motion for different systems along with energy, the packing factor, Bragg's law, Schrödinger equation, etc.	V											
CO3	Be skilled to Solve quantitative problems in the field of waves and oscillations, structure of matter, and modern physics such as energy of wave motion, wavelength, packing factor, Miller indices, quantum mechanics, etc.	V											

TEACHING LEARNING STRATEGY								
Teaching and Learning Activities	Engagement (hours)							
Face-to-Face Learning								
Lecture	42							

Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous lecture at home	21
Preparation for test and examination	21
Formal Assessment	
Class Test / Mid-Term Exam	3
Final Examination	3
Total	132

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Lect	ect Topics	
1	Introductory class: Brief discussion on total syllabus, basic	
		-
2	· · · · · · · · · · · · · · · · · · ·	
2		CT-1/
2		
3	angular frequency of SHM	Assignmen
4	Total energy and average energy of SHM, problems	t
5	Simple pendulum, torsional pendulum, spring-mass system	
6	<u> </u>	
	.	
		-
9		
10	1 1	
10		-
11		
	·	-
12		CT-2
		4
13		/Assignme
1./		nt
14	•	-
15		
13		
	1 2 3 4 5 6 7 8 9 10 11	Introductory class: Brief discussion on total syllabus, basic requirements of the course, assessment of the course Periodic motion, oscillatory motion, simple harmonic motion (SHM), properties of SHM, differential equations, general solution of SHM, graphical representation of SHM Velocity, acceleration, phase and epoch, time period, frequency and angular frequency of SHM Total energy and average energy of SHM, problems Simple pendulum, torsional pendulum, spring-mass system LC oscillatory circuit, two body oscillations, reduced mass Composition of SHM Composition of SHM, problems Damped oscillations and its differential equation Displacement equation of damped oscillations and its different conditions, electric damped oscillatory circuit Forced oscillations and its differential equation, displacement equation of forced oscillations, resonance Wave motion: expression for a plane progressive wave, differential equation of wave motion, particle velocity, wave velocity Energy density of a plane progressive wave, average energy in a plane progressive wave, problems Classification of solids, types of crystalline solids, crystal, lattice, basis,

		Components	Grading	COs	Blooms Taxono my			
ASSESSM	IENT S	STRATEGY						
Schrödinger's equation for the hydrogen atom, quantum numbers, electron spin								
Week-	41	Applications of quantum mechanics barrier, tunnel effect	: transmission	across a potential				
	40	Applications of quantum mechanics						
13	39	Applications of quantum mechanics						
Week-	38	Applications of quantum mechanics						
	37	Applications of quantum mechanics			t			
12	36	Applications of quantum mechanics		I-D box	Assignmer			
Week-	35	Time independent Schrödinger's equa						
	33	Expectation values, eigen function, of postulates of quantum mechanics Time dependent Schrödinger's equa		gen value equation,	CT-3 /			
11	32	Normalization of ψ, operators in qua						
Week-	31	Wave function (ψ), physical interpretanction for a free particle		· 				
	30	Heisenberg's uncertainty principle, i						
10	29	hypothesis, consequences of the de I	Broglie's conce	epts, wave packet				
Week-		Wave properties of matter: wave-par		le Broglie's				
	28	Introduction and origin of the quantum	ım theory					
	27	Calculation of total potential energy ionic crystal, problems						
Week-9	26	Potential, cohesive energy, binding a atomic distance, calculation of total						
	25	distinction between metal, semicono	ductor and insu	lator	l t			
		Band theory of solids: valence band			Assignmen			
WCCK-0	24	Atomic arrangement in solid: different			Assignmon			
Week-8	22 23	Defects in solids: point defects, line Defects in solids: point defects, line			Mid Term/			
	21	X-ray diffraction, Bragg's law, meth spacing from diffraction patterns, property in the control of the control	roblems					
Week-7	20	Inter-planer spacing, relation betwee indices, problems						
	19	Relation between lattice constant and numerical problems						
	18	Atomic radius, packing factor and constructures						
Week-6	17	indices						
-	10	distinctions, lattice symbols, crystal Unit face, axial units: linear and nun						
	16	Unit cell, lattice parameters, primitiv						

	Class Test 1-3 / Assignment	20%	CO1, CO2, CO3	C1, C2, C3
Continuous Assessment	Class Attendance	5%		
(40%)	Class Performance	5%		
	Mid term	10%	CO1, CO2, CO3	C1, C2, C3
			CO1	C1
Final	Exam (Section A & B)	60%	CO2	C2
			CO3	C3
	Total Marks	100%		1

(CO = Course Outcome, C = Cognitive Domain, A = Affective Domain, P = Psychomotor Domain)

REFERENCE BOOKS

- 1. Physics for Engineers: Part-I and Part-II: Dr Giasuddin Ahmad
- 2. Physics, Volume I and Volume II: Resnick and Halliday
- 3. Fundamentals of Physics: Halliday, Resnick and Walker
- 4. Physics for Scientists and Engineers: Serway and Jewett
- 5. Waves and Oscillations: Brij Lal and Subramannyam
- 6. Introduction to Solid State Physics: Charles Kittle
- 7. Solid State Physics: S. O. Pillai
- 8. Solid State Physics: Ali Omar
- 9. Fundamentals of Solid State Physics: B.S. Saxena, R.C. Gupta, P.N. Saxena
- 10. B.Sc Physics: C. L. Arora.
- 11. Elements of Quantum Mechanics: Kamal Singh, S.P. Singh
- 12. Quantum Mechanics: Concepts and Applications: Nouredine Zettili

Level 1 Term I

COURSE INFORMATION

Course Code : PHY 138 Lecture Contact Hours : 3.00

Course Title : Physics Sessional Credit Hours : 1.50

PRE-REQUISITE

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course is a laboratory course for the basic physics in the field of waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics. The course will be emphasized the fundamental experiments on different fields of physics which can be applicable in a wide spectrum of engineering disciplines. This laboratory course will enable students to understand basic physics practically as well as do work with team or individual.

OBJECTIVE

- 1. To develop basic physics knowledge practically
- 2. To practice use of basic scientific instrument

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcomes At the end of the course, a student should be able to	Correspond ing POs	Bloom's Taxonomy	СР	CA	KP	Assess ment Method s
CO1	Define the different parameters regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	PO1	C1			K1	R, Q, F
CO2	Describe the different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	PO1	C1			K1	R, Q, T, F

CO3	Skilled to Construct Experiments by an individual or by a group to determine different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	PO1	C2		K2	R, Q, T, F
CO4	Prepare a report for an experimental work.	PO1	C2		K2	R

(CP – Complex Problems, CA – Complex Activities, KP – Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, CS – Case study, MT- Mid Term Exam, F – Final Exam)

COURSE CONTENT

Quantitative measurement of different parameters in the field of waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics such as:

Specific resistance of materials, high resistance, resistance of a galvanometer, Electrochemical equivalent (ECE) of copper, comparison of the E.M.F's of two cells, radius of curvature, wavelength of light, focal length of lens, specific rotation of sugar, refractive index of a liquid, frequency of a tuning fork, acceleration due to gravity, spring constant, rigidity modulus, young's modulus, moment of inertia, conservation of linear momentum, thermal conductivity of a bad conductor, temperature co-efficient of resistance, pressure co-efficient of a gas, specific heat of a liquid, surface tension, Planck's constant.

CO-PO	CO-PO MAPPING												
No.	Course Outcome	PROGRAM OUTCOMES (PO)											
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to Define the different parameters regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.												
CO2	Be capable to Describe the different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.												

CO3	Be skilled to Construct Experiments by an individual or by a group to determine different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	V											
CO4	Be able to Prepare a report for an experimental work.												
TEAC	TEACHING LEARNING STRATEGY												
Teaching and Learning Activities								Eng	age	em	ent (ł	ours)	•
Face-t	o-Face Learning												
	Lecture										7		
	Experiment									3	35		
Self-D	irected Learning												
	Preparation of Lab Reports					20							
	Preparation for the Lab Test									1	13		
	Preparation of Quiz										9		
	Preparation of viva					9							
Forma	al Assessment												
	Continuous Assessment					14							
	Final Quiz										1		
	Final viva										1		
	Final lab exam										3		
	Total									1	12		
TEAC	HING METHODOLOGY												
	Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method												
COUR	COURSE SCHEDULE												
Weeks Topics											Re	emarks	

W1-1	Introductory class: Brief discussion on total syllabus, basic requirements of	
Week-1	the course, evaluation system of the course, grouping, visit different section of the laboratory, introduction to different basic equipment	
Week-2	Determination of the specific resistance of a wire using meter bridge or	
VV CCR-2	determination of ECE of copper by using copper voltameter	
	Determination of high resistance by the method of deflection and	
Week-3	determination of resistance of a galvanometer by half deflection method or	
	comparison of the E.M.F's of two cells by a potentiometer	
*** 1 4	Determination of the wavelength of sodium light by a spectrometer using a	
Week-4	plane diffraction grating or determination of the specific rotation of sugar by polarimeter	
	Determination of the radius of curvature of a plano-convex lens by Newton's	
Week-5	ring method or determination of focal length of a concave lens by auxiliary	
	lens method	
Week-6	Determination of the frequency of a tuning fork by Melde's experiment or	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	determination of the Planck's constant using photoelectric effect	
Week-7	Determination of the value of g acceleration due to gravity by means of a compound pendulum	
	Determination of the spring constant, effective mass and the rigidity	
Week-8	modulus of the spring or determination of the Young's modulus of bar by	
	bending method	
Week-9	Determination of the moment of inertia of a Fly-wheel about its axis of	
,,,,,,,	rotation or verification of the law of conservation of linear momentum	
*** 1 40	Determination of the thermal conductivity of a bad conductor by Lee's	
Week-10	method or determination of specific heat of a liquid by the method of	
	cooling	
Week-11	Determination of the pressure co-efficient of a gas at constant volume by constant volume air thermometer or determination of the temperature co-	
WEEK-11	efficient of resistance of the material of a wire using a meter-bridge	
Week-12	Viva & lab final experimental exam	
Week-13	Viva & lab final experimental exam	
	-	
Week-14	Quiz exam	

	Components	Grading	СО	Blooms Taxonomy
Continuous Assessment	Class performance/ Assignment	10%		
(40%)	Report Writing/ Assignment	30%	CO1, CO4	C1, C2
	Lab test	30%	CO1, CO2, CO3	C1, C2

Final Exam (60%)	Viva Quiz	10%	
	Гotal Marks	100%	

(CO = Course Outcome, C = Cognitive Domain, A = Affective Domain, P = Psychomotor Domain)

REFERENCE BOOKS

1. Practical physics for degree students: Dr Giasuddin Ahmad and Md. Sahabuddin

2. Practical Physics: G. L. Squires

3. B.Sc. Practical Physics: C. L Arora

4. Practical Physics: S.L. Gupta and V. Kumar

Chemistry

Level 1 Term II

	COURSE INFORMATION							
Course Code	: CHEM 101	Lecture Contact Hours	: 3.00					
Course Title	: Fundamentals of Chemistry	Credit Hours	: 3.00					
	PRE-REQUISITE							
	None							
	CURRICULUM STRUCTURE							
	Outcome Based Education (OBE)							
	SYNOPSIS/ RATIONALE							
	This course is the basic chemistry in the field of inorganic, organic and physical chemistry. The course will be emphasized on the basic concepts, theories and to solve quantitative problems which can be applicable in a wide spectrum of engineering disciplines.							
	OBJECTIVES							
	 To define the different parameter and concepts of inorganic chemistry and physical chemistry. To explain basic reaction mechanism of selective organic reactions. To solve numerical problems of inorganic, organic and physical chemistry. 							
	LEARNING OUTCOMES							

	T									
	 Upon completion of the course, the students will be able to Define different basic parameters in the field of inorganic, organic and physical chemistry i.e., atomic structure, periodic table, chemical bonding, acids and bases, chemical equilibrium, thermo-chemistry and different types of solutions, phase rule etc. Explain different basic theories in the field of selective organic reactions such as Oxidation-reduction, Substitution, Addition, Polymerization, Alkylation reactions etc. Solve quantitative problems in the field of inorganic, organic and physical chemistry i.e. solutions, thermochemistry, chemical kinetics, electrical properties of solution etc. 									
	COURSE OUTCOMES & GE	NERIC SKILLS								
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods			
CO1	Be able to define the different parameters and concepts regarding inorganic, organic, and physical chemistry.	PO-1	C1	-	-	1	T, F, MT			
CO2	Be able to apply different theory on chemical bonding and hybridization to determine structure of molecules.	PO-1	C3	-	-	1,2	T, F, MT			
CO3	Be able to explain the selective topics on organic chemistry.	PO-1	C2			1,2				
CO3	Solve quantitative problems in the field of inorganic, and physical chemistry.	PO-1	С3	-	-	1,2	T, F, MT, ASG			
	(CP- Complex Problems, CA-Comp Quiz; ASG – Assignment; Pr – Pres									
	COURSE CONTENT									
	Atomic Structure: Atoms and Molecules, subatomic particles, Concepts of atomic structure, Different atom models, Quantum theory and electronic configurations, Heisenberg's uncertainty principle Periodic Table: Periodic classification of elements, Periodic properties of elements, Properties and uses of noble gases Chemical Bonding: Types and properties, VBT, MOT, Hybridization and shapes of									

molecules

Selective topics on Organic chemistry: Different types of organic reactions (Addition, elimination, substitution, polymerization

Acids-Bases/Buffer Solution: Different concepts of acids-bases, Buffer solution, Mechanism of buffer solution, Henderson-Hasselbalch equation, Water chemistry and pH of water

Corrosion: Nature, forms and types of corrosion, electrochemical mechanism and prevention of corrosion

Solutions: Solutions and their classification, Unit expressing concentration, Colligative properties and

dilute solutions, Raoult's law, Van't Hoff's law of osmotic pressure

Thermochemistry: Laws of thermochemistry, Enthalpy, Heat of reaction, Heat of formation, Heat of

neutralization, Kirchoff's equations, Hess'slaw

Electrochemistry: Conductors and nonconductors, Difference between electrolytic and metallic conduction, Electrolytic conductance, Factors influencing the conductivity of electrolytes, Kohlrausch Law and conductometric titrations, Different types of electrochemical cells

Chemical Equilibria: Equilibrium law/constant, K_p and K_c, Homogeneous and heterogeneous equilibrium, Van't Hoff's reaction isotherm, Le Chatelier's principle **Phase Rule:** Basic terms and phase rule derivation, Phase diagram of an one component system Chemical Kinetics: Order and rate of reaction, Pseudo and zero order reaction, Half-life, Determination and factors affecting the rate of a reaction, First order reaction, Second order reaction, Collision theory, Transition state theorem.

SKILL MAPPING (CO-PO MAPPING)

No.	Course Learning Outcome					_	M (DUT			(PO)		
CO1	Be able to define the different parameter and concepts regarding inorganic, organic, and physical chemistry.	3	2	3	4	5	6	7	8	9	10	11	12
CO2	Be able to apply different theory on chemical bonding and hybridization to determine structure of molecules.	2											
CO3	Be able to explain the selective topics on organic chemistry.	3											

CO4	Solve quantitative problems in the field of inorganic, and physical chemistry	3						

(3 – High, 2- Medium, 1-low)

JUSTIFICAT	ION FOR CO-PO MA	APPING
Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	The conceptual knowledge of the natural sciences applicable to the engineering discipline
CO2-PO1	3	The theory-based knowledge of the natural sciences applicable to the engineering discipline
CO3-PO1	3	The numerical analysis-based knowledge of the natural sciences applicable to the engineering

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Weeks	Topics	Remarks
	General introduction, Atoms and Molecules, subatomic particles	Class
Week-1	Concepts of atomic structure	Class
	Concepts of atomic structure, Different atom models	Test 1,
W 1.0	Hydrogen spectral lines, Heisenberg's uncertainty principle, de broglies	Final France
Week-2	equation	Exam
	Schrondinger equation, Quantum numbers, Electronic configuration	
	Periodic law, Features of Periodic table	
	Classification of elements according to electronic configurations,]
Week-3	periodicity, Periodic properties of elements	
	Properties and uses of noble gases	

	Chemical bonding (types, properties)	
	Valence Shell Electron Pair Repulsion Theory, VBT	
Week-4	Hybridization of molecules	
	Shapes of the molecule	
	Molecular orbital Theory	
Week-5	Molecular orbital Theory	Class
	Different types of organic reactions (Addition, elimination, substitution,	Test 2,
		Final
		Exam
Week-6	polymerization	2234111
	Different concepts of acids-bases	
	pH, pH scale, pH of water	
	Different concepts of acids-bases	
Week-7	_	
-		
Week-8		
		Mid
		Term,
Week-9		Final
Week 5		Exam
	osmotic pressure	12/4111
	Laws of thermo chemistry, Enthalpy	
	Heat of reaction, Heat of formation, Heat of neutralization	
Week-10	Hess's law, Kirchoff's equations	
	Conductor, semiconductor, non conductor, Electrolytic conduction and its	
	mechanism	
	Faraday's law, Factors influencing the conductivity of electrolytes	
Waals 11		
WCCK-11	Conductrometric titrations	
	Different types of electrochemical cells	
	Reversible reactions, Characteristics of chemical equilibrium, Law of mass	
Week-12	polymerization Different types of organic reactions (Addition, elimination, substitution, polymerization Different concepts of acids-bases pH, pH scale, pH of water Different concepts of acids-bases pH, pH scale, pH of water Different concepts of acids-bases pH, pH scale, pH of water Different concepts of acids-bases Electrochemical mechanism and prevention of corrosion Solutions and their classification, Unit expressing concentration Effect of temperature and pressure on solubility, Validity and limitations Of Henry'slaw Colligative properties and dilute solutions, Raoult's law,deviation from Raoult's law, Elevation of boiling point, Freezing point depression, Van't Hoff's law of osmotic pressure Laws of thermo chemistry, Enthalpy Heat of reaction, Heat of formation, Heat of neutralization Hess's law, Kirchoff's equations Conductor, semiconductor, non conductor, Electrolytic conduction and its mechanism Faraday's law, Factors influencing the conductivity of electrolytes Conductrometric titrations Different types of electrochemical cells Reversible reactions, Characteristics of chemical equilibrium, Law of mass action, Equilibrium constant, Units of equilibrium constant Relation between K _P and K _c , van't Hoff's reaction isotherm, vant' Hoff' equation Free energy and its significance, Heterogeneous equilibrium, Le Chatelier's principle Phase Rule: Basic terms and phase rule derivation Phase Diagram of an one component system Pseudo and zero order reaction, Half-life Determination and factors affecting the rate of a reaction	
	Free energy and its significance, Heterogeneous equilibrium, Le Chatelier's	Class
	principle	Test 3,
	Phase Rule: Basic terms and phase rule derivation	Final –
		Exam
Week-13	Phase Diagram of an one component system	
WCCR-13		
	Pseudo and zero order reaction, Half-life	
	Determination and factors affecting the rate of a reaction	
Week-14		
*** CCK-1-	First order reaction, Second order reaction	

Collision theory, Transition state theory	

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment	20%	CO1, CO3	C1, C3
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO3	C3
,	Mid term	10%	CO1, CO2, CO3	C1, C2, C3
Final E	Examination (60%)	60%	CO1, CO2, CO3	C1, C2, C3
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. S. Z. Haider, Modern Inorganic Chemistry, 1st Edition, Friends International, 2005
- 2. J. D. Lee, Concise Inorganic Chemistry, 5th Edition, Wiley India Pvt. Limited, 2008
- 3. Arun Bahl And B. S. Bahl, A Textbook of Organic Chemistry, 16th Edition, Chand, 1997
- 4. Morrison and Boyd , Organic Chemistry, 6th Edition, Prentice Hall, 1998
- 5. Haque and Nawab , Principles of Physical Chemistry, 1st Edition, Nawab Publications, 2005
- 6. Bahl and Tuli, Essentials of Physical Chemistry, Revised Edition, S. Chand Limited, 2000
- 7. Atkins , Physical Chemistry , Revised Edition, OUP Oxford, 2010

RE	$\mathbf{R}(\mathbf{R})$	$\mathbf{R}\mathbf{E}$	NCE	SITE

Level 1 Term II

	COURSE INFORMATION								
Course Code	: CHEM 102	Lecture Contact Hours	: 3.00						
Course Title	: Chemistry Sessional	Credit Hours	: 1.50						
	PRE-REQUISITE								
	None								
	CURRICULUM STRUCTURE								
	Outcome Based Education (OBE)								
	SYNOPSIS/ RATIONALE								

This course is a laboratory course for the basic chemistry in the field of inorganic and physical chemistry. The course will be emphasized by fundamental experiments on different fields of chemistry which can be applicable in a wide spectrum of engineering disciplines. This laboratory course will enable students to understand basic chemistry practically as well as do work with team or individual.

OBJECTIVES

- 1. To develop basic chemistry knowledge practically
- 2. To practice the use of basic scientific instrument.

LEARNING OUTCOMES

Upon completion of the course, the students will be able to

- 1. Define the different parameters regarding inorganic and physical chemistry.
- 2. Describe the different phenomena regarding acid-base, iodo-iodimetric, complexometric and redox titration etc.
- 3. Construct Experiments by an individual or by a group to determine different phenomena regarding acid-base, iodo-iodimetric, complexometric and redox titration etc.
- 4. Prepare a report for an experimental work.

	COURSE OUTCOMES & GEN	ERIC SKILLS						
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods	
CO1	Define the different parameters regarding inorganic and physical chemistry.	PO-1	C1	-	-	1	Q	
CO2	Describe the different phenomena regarding acid-base, iod o- iodimetric, complexometric and redox titration etc.	PO-1	C1	-	-	1	T, F	
CO3	Construct Experiments by an individual or by a group to determine different phenomena regarding acid-base, iodo-iodimetric, complexometric and redox titration etc.	PO-9	С3	-	-	2	F	
CO4	Prepare a report for an experimental work.	PO-10	C2	-	_	2	R	
1								

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Standardization of Sodium Hydroxide (NaOH) Solution with Standard Oxalic Acid dihydrate (C₂H₂O₄.2H₂O) Solution.

Standardization of Hydrochloric Acid (HCl) Solution with Standard Sodium Hydroxide (NaOH) Solution.

Standardization of Hydrochloric Acid (HCl) Solution with Standard Sodium Carbonate (Na₂CO₃) Solution.

Determination of Calcium (Ca) Content in a Calcium Chloride dihydrate (CaCl₂.2H₂O) Solution with Standard Di-Sodium Ethylene DiammineTetraAceticAcid (Na₂EDTA) Solution.

Standardization of Sodium Thiosulphate Pentahydrate ($Na_2S_2O_3.5H_2O$) Solution with Standard Potassium Dichromate ($K_2Cr_2O_7$) Solution.

Estimation of Copper (Cu) Content in a Copper Sulphate Pentahydrate (CuSO $_4.5H_2O$) (Blue Vitriol) Solutions by Iodometric Method with Standard Sodium Thiosulphate Pentahydrate (Na $_2S_2O_3.5H2O$) Solution.

Standardization of Potassium Permanganate (KMnO4) Solution with Standard Oxalic Acid dihydrate ($C_2H_2O_4.2H_2O$) Solution.

Determination of Ferrous (Fe) Content in a Ammonium Ferrous Sulphate (Mohr's Salt) [FeSO₄.(NH4)₂SO₄.6H₂O] Solution with Standard Potassium Permanganate (KMnO₄) Solution. Determination of Zinc (Zn) Content in a Zinc Sulphate Heptahydrate (ZnSO₄.7H₂O) Solution with Standard Di-Sodium EDTA (Na₂-EDTA) Solution by using Eriochrome black T indicator.

SKILL MAPPING (CO-PO MAPPING)

No.	Course I coming Outcome			P	ROC	3RA	M ()UT(COM	IES ((PO)		
110.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Define the different parameters regarding inorganic and physical chemistry.	3											
CO2	Describe the different phenomena regarding acid-base, iodo-iodimetric, complexometric and redox titration etc.	3											
CO3	Construct Experiments by an individual or by a group to determine different phenomena regarding acid-base, iodoiodimetric, complexometric and redox titration etc.									2			
CO4	Prepare a report for an experimental work.										1		

(3 - High, 2 - Medium, 1 - low)

JUSTIFICATION FOR CO-PO MAPPING Mapping Corresponding Level of Matching Justification CO1-PO1 3 The conceptual knowledge of the natural sciences applicable to the engineering discipline CO2-PO1 3 The descriptive knowledge of the natural sciences applicable to the engineering discipline

CO3-PO9	2	Able to do work or complete a task as an individual and as a team
CO4-PO10	1	Capable to write a report on an experimental work

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	10
Practical / Experiment	18
Student-Centered	-
Learning	
Self-Directed Learning	
Preparation of Lab Reports	18
Preparation of Lab-test	25
Preparation of Quiz	9
Preparation of viva	9
Formal Assessment	
Continuous Assessment	2
Quiz	1
Final lab exam	3
Total	95

TEACHING METHODOLOGY

 $Lecture\ followed\ by\ practical\ experiments\ and\ discussion,\ Co-operative\ and\ Collaborative\ Method,\ Design\ Based\ Method$

Weeks	Topics	Remarks
Week-1	Orientation and Introductory lecture	
Week-2	Standardization of Sodium Hydroxide (NaOH) Solution with Standard Oxalic Acid dihydrate (C ₂ H ₂ O ₄ .2H ₂ O) Solution	
Week-3	Standardization of Hydrochloric Acid (HCl) Solution with Standard Sodium Hydroxide (NaOH) Solution.	
Week-4	Standardization of Hydrochloric Acid (HCl) Solution with Standard Sodium Carbonate (Na ₂ CO ₃) Solution	
Week-5	Determination of Calcium (Ca) Content in a Calcium Chloride dihydrate (CaCl ₂ .2H ₂ O) Solution with Standard Di-Sodium Ethylenediamminetetraacetic Acid (Na ₂ EDTA) Solution.	-
Week-6	Mid Term	
Week-7	Standardization of Sodium Thiosulphate Pentahydrate (Na ₂ S ₂ O ₃ .5H ₂ O) Solution with Standard Potassium Dichromate (K ₂ Cr ₂ O ₇) Solution.	
Week-8	Estimation of Copper (Cu) Content in a Copper Sulphate Pentahydrate (CuSO ₄ .5H ₂ O) (Blue Vitriol) Solutions by Iodometric Method with Standard Sodium Thiosulphate Pentahydrate (Na ₂ S ₂ O ₃ .5H ₂ O) Solution.	-
Week-9	Standardization of Potassium Permanganate (KMnO ₄) Solution with Standard Oxalic Acid dihydrate (C ₂ H ₂ O ₄ .2H ₂ O) Solution.	

Week-10	Determination of Ferrous (Fe) Content in a Ammonium Ferrous Sulphate (Mohr's Salt) [FeSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O] Solution with Standard Potassium Permanganate (KMnO ₄) Solution.	
Week-11	Revision class and final lecture	
Week-12	Final exam & viva voce	
Week-13	Final exam & viva voce	-
Week-14	Quiz exam	

Co	mponents	Grading	CO	Blooms Taxonomy
Continuous	Class performance	10%	CO1	C1
Assessment (40%)	Report Writing	30%	CO4	C2
Einel Enem	Lab test	30%		
Final Exam	Viva	10%	CO1, CO2, CO3	C1, C3
(60%)	Quiz	20%		
To	otal Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. G.H. Jeffery, J. Bassett, J. Mendham, R.C. Denney, *Vogel's Textbook of Quantitative Chemical Analysis*, 5th Edition, Longman Scientific & Technical, 1989
- 2. G. D. Christian., Analytical Chemistry, 6th Edition, Wiley India Pvt. Limited, 2007

RE	FFR	FNCE	SITE

Mathematics

Level 1 Term I

	COURSE INFORMATION						
Course Code	: MATH 101	Lecture Contact Hours	: 3.00				
Course Title	: Differential and Integral Calculus	Credit Hours	: 3.00				
	PRE-REQUISITE						
	None						

Outcome Based Education (OBE) SYNOPSIS/ RATIONALE Purpose of this course is to introduce basic knowledge of Differential Calculus and use it in engineering study. OBJECTIVES 1. To impart basic knowledge on differential and integral Calculus to solve engineering problems and other applied problems. 2. Developing understanding some of the important aspects of rate of change, area, tangent normal and volume. 3. To make proficient in imparting in depth knowledge of functional analysis such as increasing decreasing, maximum and minimum values of a function LEARNING OUTCOMES Upon completion of the course, the students will be able to- 1. Compute/Calculate different engineering calculations based on differential and integra calculus. 2. Comprehend/ Understand/Explain basic ideas of rate of change, slope of curve, tangent normal, arc length, area and volume. 3. Perform/Describe the functional analysis calculations such as increasing, decreasing maximum and minimum values of a function and concavity.		CURRICULUM STRUCTURI	<u>र</u>						
SYNOPSIS/ RATIONALE Purpose of this course is to introduce basic knowledge of Differential Calculus and use it in engineering study. OBJECTIVES 1. To impart basic knowledge on differential and integral Calculus to solve engineering problems and other applied problems. 2. Developing understanding some of the important aspects of rate of change, area, tangent normal and volume. 3. To make proficient in imparting in depth knowledge of functional analysis such as increasing decreasing, maximum and minimum values of a function LEARNING OUTCOMES Upon completion of the course, the students will be able to- 1. Compute/Calculate different engineering calculations based on differential and integra calculus. 2. Comprehend/ Understand/Explain basic ideas of rate of change, slope of curve, tangent normal, are length, area and volume. 3. Perform/Describe the functional analysis calculations such as increasing, decreasing maximum and minimum values of a function and concavity. 4. Prepare/Apply the necessary technics for calculations based on differential and integral calculus. COURSE OUTCOMES& GENERIC SKILLS No. Course Learning Outcome Corresponding Pos Taxonomy CP CA KP Assessment Methods Define the limit, continuity and differentiability of functions, identify the rate of change of a function with respect to independent variables and describe the different techniques of evaluating indefinite and definite integrates. Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study. Calculate the length, area, volume, center of gravity and average value related to engineering study. Calculate the length, area, volume, center of gravity and average value related to engineering study. CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T - Test; PR - Project; Q - Quiz; ASG - Assignment; Pr - Presentation; R - Report; F - Final Exam, MT- Mid Term Exam)									
Purpose of this course is to introduce basic knowledge of Differential Calculus and use it in engineering study. OBJECTIVES 1. To impart basic knowledge on differential and integral Calculus to solve engineering problems and other applied problems. 2. Developing understanding some of the important aspects of rate of change, area, tangent normal and volume. 3. To make proficient in imparting in depth knowledge of functional analysis such as increasing decreasing, maximum and minimum values of a function LEARNING OUTCOMES Upon completion of the course, the students will be able to- 1. Compute/Calculate different engineering calculations based on differential and integral calculus. 2. Comprehend/ Understand/Explain basic ideas of rate of change, slope of curve, tangent normal, are length, area and volume. 3. Perform/Describe the functional analysis calculations such as increasing, decreasing maximum and minimum values of a function and concavity. 4. Prepare/Apply the necessary technics for calculations based on differential and integral calculus. COURSE OUTCOMES& GENERIC SKILLS No. Course Learning Outcome Corresponding Bloom's Taxonomy CP CA KP Assessment Methods differentially of functions, identify the rate of change of a function and differential and definite and definite integrals. Apply the concepts or techniques of differentian and differentian and integration to solve the problems related to engineering study. Colaculate the length, area, volume, center of gravity and average value related to engineering study. Calculate the length, area, volume, center of gravity and average value related to engineering study. Colocurs CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)									
OBJECTIVES 1. To impart basic knowledge on differential and integral Calculus to solve engineering problems and other applied problems. 2. Developing understanding some of the important aspects of rate of change, area, tangent normal and volume. 3. To make proficient in imparting in depth knowledge of functional analysis such as increasing decreasing, maximum and minimum values of a function LEARNING OUTCOMES Upon completion of the course, the students will be able to- 1. Compute/Calculate different engineering calculations based on differential and integra calculus. 2. Comprehend/ Understand/Explain basic ideas of rate of change, slope of curve, tangent normal, are length, area and volume. 3. Perform/Describe the functional analysis calculations such as increasing, decreasing maximum and minimum values of a function and concavity. 4. Prepare/Apply the necessary technics for calculations based on differential and integra calculus. COURSE OUTCOMES& GENERIC SKILLS No. Course Learning Outcome Course Science Skills No. Course Learning Outcome Corresponding Define the limit, continuity and differentiability of functions, identify the rate of change of a function with respect to independent variables and describe the different techniques of evaluating indefinite and definite integrals. Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study. Columber Pos 1 C3 1 3 CT, Mid Term Exam, Apply the concepts or techniques of evaluating indefinite and definite integrals. Columber Pos 1 C3 1 3 Exam, F, ASG Columber Pos 2 1 3 Exam, F, ASG (CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T - Test; PR - Project; Q - Quiz; ASG - Assignment; Pr - Presentation; R - Report; F - Final Exam, MT - Mid Term Exam)		STROISIS/ KATIONALE	STNOTSIS/ KATIONALE						
1. To impart basic knowledge on differential and integral Calculus to solve engineering problems and other applied problems. 2. Developing understanding some of the important aspects of rate of change, area, tangent normal and volume. 3. To make proficient in imparting in depth knowledge of functional analysis such as increasing decreasing, maximum and minimum values of a function LEARNING OUTCOMES Upon completion of the course, the students will be able to- 1. Compute/Calculate different engineering calculations based on differential and integral calculus. 2. Comprehend/ Understand/Explain basic ideas of rate of change, slope of curve, tangent normal, arc length, area and volume. 3. Perform/Describe the functional analysis calculations such as increasing, decreasing maximum and minimum values of a function and concavity. 4. Prepare/Apply the necessary technics for calculations based on differential and integral calculus. COURSE OUTCOMES& GENERIC SKILLS No. Course Learning Outcome Corresponding Bloom's CP CA KP Assessment Methods differentiability of functions, identify the rate of change of a function with respect to independent variables and describe the different techniques of evaluating indefinite and definite integrals. Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study. Coalculate the length, area, volume, center of gravity and average value related to engineering study. Coalculate the length, area, volume, center of gravity and average value related to engineering study. Coalculate Term Exam, F. Project; Q.—Quiz; ASG.—Assignment; Pr.—Presentation; R.—Report; F.—Final Exam, MT.—Mid Term Exam)			duce basic knowle	edge of Differ	ential	Calcul	lus and	l use it in	
problems and other applied problems. 2. Developing understanding some of the important aspects of rate of change, area, tangent normal and volume. 3. To make proficient in imparting in depth knowledge of functional analysis such as increasing decreasing, maximum and minimum values of a function LEARNING OUTCOMES		OBJECTIVES							
Upon completion of the course, the students will be able to- 1. Compute/Calculate different engineering calculations based on differential and integra calculus. 2. Comprehend/ Understand/Explain basic ideas of rate of change, slope of curve, tangent normal, arc length, area and volume. 3. Perform/Describe the functional analysis calculations such as increasing, decreasing maximum and minimum values of a function and concavity. 4. Prepare/Apply the necessary technics for calculations based on differential and integra calculus. COURSE OUTCOMES& GENERIC SKILLS		problems and other appliedDeveloping understanding normal and volume.To make proficient in impar	 problems and other applied problems. Developing understanding some of the important aspects of rate of change, area, tangent, normal and volume. To make proficient in imparting in depth knowledge of functional analysis such as increasing, 						
1. Compute/Calculate different engineering calculations based on differential and integra calculus. 2. Comprehend/ Understand/Explain basic ideas of rate of change, slope of curve, tangent normal, arc length, area and volume. 3. Perform/Describe the functional analysis calculations such as increasing, decreasing maximum and minimum values of a function and concavity. 4. Prepare/Apply the necessary technics for calculations based on differential and integra calculus. COURSE OUTCOMES& GENERIC SKILLS No. Course Learning Outcome Corresponding Bloom's Taxonomy CP CA KP Assessment Methods Define the limit, continuity and differentiability of functions, identify the rate of change of a function with respect to independent variables and describe the different techniques of evaluating indefinite and definite integrals. Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study. CO2 CO3 CO3 CO4 CO5 CO5 CO5 CO6 CO7 CO7 CO7 CO8 CO8 CO8 CO8 CO8									
No. Course Learning Outcome Corresponding POs Taxonomy CP CA KP Assessment Methods Define the limit, continuity and differentiability of functions, identify the rate of change of a function with respect to independent variables and describe the different techniques of evaluating indefinite and definite integrals. Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study. CO2 Calculate the length, area, volume, center of gravity and average value related to engineering study (CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T - Test; PR - Project; Q - Quiz; ASG - Assignment; Pr - Presentation; R - Report; F - Final Exam, MT- Mid Term Exam)		 Compute/Calculate different engineering calculations based on differential and integral calculus. Comprehend/ Understand/Explain basic ideas of rate of change, slope of curve, tangent, normal, arc length, area and volume. Perform/Describe the functional analysis calculations such as increasing, decreasing, maximum and minimum values of a function and concavity. Prepare/Apply the necessary technics for calculations based on differential and integral 							
Define the limit, continuity and differentiability of functions, identify the rate of change of a function with respect to independent variables and describe the different techniques of evaluating indefinite and definite integrals. Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study. CO2 Calculate the length, area, volume, center of gravity and average value related to engineering study (CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)		COURSE OUTCOMES& GEN	NERIC SKILLS						
CO1 differentiability of functions, identify the rate of change of a function with respect to independent variables and describe the different techniques of evaluating indefinite and definite integrals. Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study. CO2 CO3 CO3 CO3 CO4 CO5 CO5 CO5 CO6 CO6 CO6 CO7 CO7 CO7 CO7 CO7	No.				СР	CA	KP		
Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study. CO2 CO3 CO3 CO4 CO5 CO5 CO5 CO5 CO5 CO6 CO6 CO6	CO1	Define the limit, continuity and differentiability of functions, identify the rate of change of a function with respect to independent variables and describe the different techniques of evaluating					F,		
volume, center of gravity and average value related to engineering study PO-1 C3 1 3 Exam, F, ASG (CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)	CO2	Apply the concepts or techniques of differentiation and integration to solve the problems related to	PO-1	C3	1		3	Term	
Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)	CO3	volume, center of gravity and average value related to	PO-1	СЗ	1		3	Exam, F,	
COURSE CONTENT		(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q –							
		COURSE CONTENT							

Differential Calculus: Introduction, Differential Calculus for Engineering, Function and Limit, Continuity and Differentiability of function. Cartesian differentiation Successive Differentiation, Leibnittz's Theorem, Rolle's Theorem, Mean Value Theorem, Taylor's theorem, Expansion of Finite and Infinite forms, Indeterminate form, Partial differentiation, Euler's theorem, Tangent, sub tangent and Normal, sub normal, Maxima and Minima, concavity, Curvature, Asymptotes.

Integral Calculus: Definition of Integration, Importance of Integration in Eng., Integration by substitution, Integration by parts, Standard integrals, Integration by successive reduction, Definite integrals and its properties, Integration as a limit of sum, Walli's formula, Improper Integrals, Beta and Gamma function, Multiple integral and its application, Arc lengths of curves, Area under a plain curve, Area of the region enclosed by two curves, Volume of solid revolution

SKILL MAPPING (CO-PO MAPPING)

NI-	Course Learning Outrons	PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Define different basic parameters in the field of inorganic, organic and physical chemistries., atomic structure, periodic table, chemical bonding, acids and bases, chemical equilibrium, thermochemistry and different types of solutions, phase rule etc.	3											
CO2	Explain different basic theories in the field of selective organic reactions such as Oxidation- reduction, Substitution, Addition, Polymerization, Alkylation reactions etc.	3											
CO3	Solve quantitative problems in the field of inorganic, organic and physical chemistry i.e. solutions, thermochemistry, chemical kinetics, electrical properties of solution etc.	3											

(3 – High, 2- Medium, 1-low)

JUSTIFICAT	JUSTIFICATION FOR CO-PO MAPPING								
Mapping	Corresponding Level of Matching	Justification							
CO1-PO1	3	The knowledge of mathematics, science and engineering sciences has to be applied to describe the complete concept of differential and integral calculus.							
CO2-PO1	3	To apply proper and improper integral in the field of engineering study, the knowledge of mathematics, science and engineering sciences is required.							

CO3-PO1	3	In order to calculate volume, average, center of gravity and area of any solid revolution object, the knowledge of mathematics, and engineering sciences is needed.
---------	---	---

TEACHING I	TEACHING LEARNING STRATEGY						
Teaching and I	earning Activities	Engagement (hours)					
	Face-to-Face Learning						
	Lecture	42					
	Practical / Tutorial / Studio	-					
	Student-Centered Learning	-					
	Self-Directed Learning						
	Non-face-to-face learning	84					
	Revision	21					
	Formal Assessment						
	Continuous Assessment	2					
	Mid-Term	1					
	Final Examination	3					
	Total	153					

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Weeks	Topics				
Week-1	Introduction to Differential Calculus for Engineering study, Limit of a function and its properties. Basic limit theorems with proofs, Limit of infinity and infinite limit, Sandwich (Squeezing) theorem with problems. Concept of Differentiation, definition, classification of discontinuity and solving	Class			
Week-2	problems Basic concept of Differentiability, definition, derivative of a function, differentiable function. Differentiability – one sided derivatives (R.H.D and L.H.D), solving problems Successive differentiation – Concept and problem solving	Test 1, Final Exam			
Week-3	Leibnitz's theorem and its applications Determination of $(y_n)_0$ Mean Value theorem, Taylor theorem				
Week-4	Expansion of finite and infinite forms, Lagrange's and Cauchy's form of remainder. Indeterminate forms – concept and problem solving, L'Hospital's rules with application	Class			
Week-5	Partial differentiation - partial derivatives of a function of two variables and problems Partial differentiation - partial derivatives of a homogeneous function of two				

	Addition, Polymerization, Alkylation				
Week-6	Phase Rule: Basic terms and phase rule derivation				
,, 55 11 5	Phase Diagram of water and carbon dioxide				
	maxima and minima of functions of single variables – concept, Increasing and				
*** 1.7	decreasing function, Concave up and down with problems				
Week-7	Curvature				
	Asymptotes				
	Introduction to integral calculus				
Week-8	Standard integrals – concept of definite and indefinite integrals, applications.				
	Indefinite integrals – Method of substitution, Techniques of integration				
	Indefinite integrals – Integration by parts, Special types of integration, integration	Mid			
Week-9	by partial fraction,	Term,			
WCCK-9	Integration by the method of successive reduction				
	Definite integrals – definite integrals with properties and problems				
	Definite integrals – Reduction formula, Walli's formula				
Week-10	Definite integrals – definite integral as the limit of the sum				
	Beta function – concept and problem solving				
	Gamma function - concept and problem solving				
Week-11	Relation between beta and gamma function, Legendre duplication formula,				
WCCK-11	problems and applications				
	Multiple integrals – double integrals				
	Multiple integrals – triple integrals				
Week-12	Multiple integrals – successive integration for two and three variables	Class			
	Area in Cartesian	Test 3,			
	Area in polar	Final			
Week-13	Volume of solid revolution				
	Area under a plain curve in Cartesian and polar coordinates				
	Area of a region enclosed by two curves in Cartesian and polar coordinates				
Week-14	Arc lengths of curves in Cartesian coordinates				
	Arc lengths of curves in polar coordinates				

	Components	Grading	CO	Blooms Taxonomy
	Class Tast/ Assignment	20%	CO1, CO2	C1, C2
Continuous	Class Test/ Assignment	20%	CO 2	C3
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO 3	C3
	Mid term	10%	CO 2, CO3	C3
			CO 1	CO 1
Final Exam		60%	CO 2	CO 2
			CO 3	CO 3
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- Howard Anton, Irl C. Bivens, Stephen Davis, *Calculus*, 10th Edition, Wiley, 2012
 Morris Kline, *Calculus: An Intuitive and Physical Approach*, , 2nd Edition, Courier Corporation, 2013

REFERENCE SITE

Level 1 Term II

	COURSE INFORMATION								
Course Code Course Title	: MATH 113 : Differential Equations and Linear		Lecture Conta Credit Hours	act Hours	: 3.0	-			
	PRE-REQUISITE								
	MATH 101								
	CURRICULUM STRUCTURE								
	Outcome Based Education (OBE)								
	SYNOPSIS/ RATIONALE								
	Purpose of this course is to intro equations and concept of linear alg		owledge to id	entify and	solve	differential			
	OBJECTIVES								
	 To impart basic knowledge on ordinary and partial differential equations. Developing understanding some of the important aspects of ordinary and partial differential equations. To provide knowledge on using concept of Differential equations and linear algebra in engineering problems and solve other applied problems. To be expert in imparting in depth knowledge on inverse linear algebra. 								
	LEARNING OUTCOMES								
	 Upon completion of the course, the students will be able to Compute different engineering calculations based on differential equations. Comprehend basic ideas of differential equations and related theories. Prepare necessary calculations based on ordinary and partial differential equations. Perform differential equations calculations based on wave equation, heat flow, fluid flow temperature distribution etc. 								
	COURSE OUTCOMES & GENERIC SKILLS								
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	CP CA	KP	Assessment Methods			
CO1	Define various types of differential equations and Identify the classifications of ordinary and partial differential	PO 1	C1, C2	1	3	T, F, ASG			

	equations.										
CO2	Apply the knowledge to identify and solve ordinary and partial	PO 1	C3	1		3	T, MT, F				
	differential equations.										
CO3	Apply the technique to obtain the inverse matrix that solve the system of linear equations.	PO 1	C3	1		3	MT, F, ASG				
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)										
	COURSE CONTENT										
	Differential Equations: Introduction & Formulation of DE in Engineering, Degree and order of ODE, Solution of first order differential equation by various methods. Solution of first order but higher degree DE by various methods, Solution of general linear DEs of second and higher order, Solution of Euler's homogeneous linear DEs, Solution of DEs by methods based on factorization, Frobenious methods, Bessel's functions, Legendre's polynomial, Formation PDE, Solution of linear first order PDE, Solution of Non-linear first order PDE, Standard form. Linear PDE with constant coefficients, PDEs of higher order and wave equation, particular solutions with boundary and initial condition, Applications of DE.										
	Linear Algebra: Notion of a matrix, types of matrices, matrix operations, laws of matrix algebra, transpose and inverse of a matrix, quadrate forms, adjoin matrix, tridiagonal matrix, block matrix, properties of determinants, types of determinants, minor, cofactors, expansion and evaluation ofdeterminants, elementary row and column operations, row reduced echelon metrics. Linear equations, system of linear equations (homogeneous and non-homogeneous) and their solutions, linear dependence and independence of vectors, rank of a matrix, application of matrices and determinates for solving system of linear equations. Linear transformations, kernel and image of a linear transformation and their properties, matrix representation of linear transformations, change of bases. Eigenvalues and eigenvectors, characteristic polynomial, diagonalization, Cayley Hamilton theorem, applications.										
	SKILL MAPPING (CO-PO M	APPING)		SKILL MAPPING (CO-PO MAPPING)							

No	Course I comin a Outcome		PROGRAM OUTCOMES (PO)										
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Define various types of differential equations and identify the classifications of ordinary and partial differential equations.	3											
CO2	Apply the knowledge to identify and solve ordinary and partial differential equations.	3											
CO3	Apply the technique to obtain the inverse matrix that solve the system of linear equations	3											

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	The knowledge of mathematics, science and engineering sciences has to be applied to describe the complete concept of differential and integral calculus.
CO2-PO1	3	The solution of different real world phenomena like string vibration, heat flow, fluid flow, temperature distribution, loading calculations etc require the concept of ordinary and partial differential equations.
CO3-PO1	3	The solution of system of linear equations of any order require to known the apply technic of inverse matrix.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement
	(hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21

Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Weeks	Topics	Remarks
Week-1	Introduction & Formulation of DE in Engineering, Degree and order of ODE Introduction & Formulation of DE in Engineering, Degree and order of ODE Solution of first order first degree DE by various method	
Week-2	Solution of first order first degree DE by various method Solution of first order but higher degree DE by various methods Solution of first order but higher degree DE by various methods	Class Test 1,
Week-3	Solution of general DEs of second and higher order, Solution of Euler's homogeneous linear DEs Solution of general DEs of second and higher order, Solution of Euler's homogeneous linear DEs Solution of general DEs of second and higher order, Solution of Euler's homogeneous linear DEs Solution of general DEs of second and higher order, Solution of Euler's homogeneous linear DEs	Final Exam
Week-4	Solution of DEs by methods based on factorization, Frobenious methods, Bessel's functions, Legendre's polynomial Introduction & Formulation of DE in Engineering, Degree and order of ODE	Class Test 2,
	Introduction & Formulation of DE in Engineering, Degree and order of ODE	Final Exam
Week-5	Solution of DEs by methods based on factorization, Frobenious methods, Bessel's functions, Legendre's polynomial	Lain
	Solution of DEs by methods based on factorization, Frobenious methods, Bessel's functions, Legendre's polynomial	
	Solution of DEs by methods based on factorization, Frobenious methods, Bessel's functions, Legendre's polynomial	
	Linear PDE with constant coefficient	
Week-6	Linear PDE with constant coefficients	
	Particular solutions with boundary and initial condition	
Week-7	Particular solutions with boundary and initial condition	
vv eek-/	Application of ODE and PDE in Eng study Application of ODE and PDE in Eng study	

Week-8	Definition of Matrix, different types of matrices, Algebra of Matrices, Definition of Matrix, different types of matrices, Algebra of Matrices, Transpose and adjoint of a matrix and inverse matrix	
	Solution of linear equation or System of Linear Equation	Mid
Week-9	Solution of linear equation or System of Linear Equation	Term, Final
	Solution of linear equation or System of Linear Equation	Exam
	Solution of linear equation using Inverse Matrix	
Week-10	Rank, Nullity and elementary transformation	
	Rank, Nullity and elementary transformation	
	Dependent and independent of vectors	
Week-11	Dependent and independent of vectors	
	Linear transformations, kernel and image of a linear transformation and their	
	properties	
	Linear transformations, kernel and image of a linear transformation and their	
Week-12	properties	Class
	Linear transformations, kernel and image of a linear transformation and their properties	Test 3, Final
	Matrix representation of linear transformations, change of bases	Exam
	Matrix representation of linear transformations, change of bases	
Week-13	Matrix polynomials determination characteristic roots and vectors	
	Characteristic subspace of matrix and Eigen values and Eigen Vectors,	
	Characteristic subspace of matrix and Eigen values and Eigen Vectors,	
Week-14	Cayley Hamilton theorem and its application. Finding inverse matrix	
	using this theorem.	
	Cayley Hamilton theorem and its application. Finding inverse matrix	
	using this theorem.	

Components		Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment	20%	CO1, CO2	C1, C2
Assessment	Cluss Test Tissignment	2070	CO 2	C3
(40%)	Class Participation and Class attendance	5+5= 10%	CO 3	C3

	Mid term	10%	CO 2, CO3	C3
			CO 1	C1, C2
	Final Exam	60%	CO 2	C3
			CO 3	C3
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Howard Anton, Chris Rorres, Anton Kaul, *Elementary Linear Algebra* ,12th Edition , John Wiley & Sons, 2019
- 2. Dr. M.D. Raisinghania, Ordinary and Partial Differential Equations, S.Chand Publishing, 2013

REFERENCE SITE

Level 2 Term I

	COURSE INFORMATION					
Course Code Course Title	: MATH 201 : Vector Analysis, Laplace Transform and Coordinate Geometry	Lecture Contact Hours Credit Hours	: 3.00 : 3.00			
	PRE-REQUISITE					
	MATH 101 and MATH 103					
	CURRICULUM STRUCTURE					
	Outcome Based Education (OBE)					
	SYNOPSIS/ RATIONALE					
	Purpose of this course is to introduce basic knowledge to identify and solve vector mathematical problems, to demonstrate practical applications of Laplace Transform and analyze co-ordinate geometry.					
	OBJECTIVES					
	 To impart basic knowledge on the vector analysis, Laplace transform and geometry. To familiarize the students with straight lines, pair of straight lines, circles, conics in 2D and 3D co-ordinate systems. To find the length, volume and area of objects related to engineering study by using vector, application of Laplace transforms to ordinary differential equations and also solve the problems of the pair of straight lines, circles, system of circles, parabola, ellipse etc. 					

LEARNING OUTCOMES

Upon completion of the course, the students will be able to
1. Compute different engineering calculations based on Laplace transform, Vector analysis
and Co-ordinate geometry.

- and Co-ordinate geometry.Comprehend basic ideas of vector analysis, laplace transform and co-ordinate geometry.
- 3. **Prepare** necessary calculations based on vector analysis, laplace transform and co-ordinate geometry.
- 4. **Perform** real case studies calculations based on vector analysis, laplace transform and coordinate geometry.

	COURSE OUTCOMES & GENERIC SKILLS								
No.	No. Course Learning Outcome		Bloom's Taxonomy	СР	CA	KP	Assessment Methods		
CO1	Know the physical explanation of different vector notation and Define Laplace transform, inverse Laplace transform, different types of matrices, and their properties.	PO-1	C1-C2	1	1 - 3		T, F, ASG		
CO2	Explain the characteristics of conics and familiarize with straight lines, pair of straight lines, circles, radical axis and center in 2D and 3D co-ordinate systems.	PO-1	C2	1	- 3 T, MT,		T, MT, F		
CO3	Calculate length, volume and area of objects related to engineering study by using vector, Apply Laplace transform to ODE and PDEs and the knowledge of geometry in engineering study. Solve the problems of the pair of straight lines, circles, system of circles, parabola, ellipse etc.	PO-1	C3	1	-	3	MT, F, ASG		
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)								

COURSE CONTENT

Vector Analysis: Definition of Vector and scalers & vector algebra, Scaler and vector products of two vectors and their geometrical interpretation, Triple products and multiple products, Linear dependence and independence of vectors, Differentiation of vectors, Gradient of scaler functions, Divergence and curl of point functions, physical significance of gradient, divergence and curl, Definition of line, surface and volume integral, Integration of Vectors, Green's theorem and its application, Stoke's theorem and its application, Gauss theorem and its application in Engineering.

Laplace Transform (LT): Definition of LT and Application of LT for Engineering, LT of some elementary functions and properties of LT, Sufficient condition for existence of LT, Inverse LT, LT of derivatives, Unit step function, Periodic function, Some special theorems on LT, Partial fraction, Solution of DEs by LT, Heaviside expansion formula, Convolution theorem, Evaluation of improper integral, Application of LT.

Co-ordinate Geometry: Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties, circles (tangents, normal, chord of contact, pole and polar), Equation of conics, homogeneous equations of second degree, angle between straight lines, pair of lines joining the origin to the point of intersection of two given curves, equations of parabola, ellipse in Cartesian and polar coordinates, system of circles (radical axes, coaxial circles, limiting points), Three dimensional co-ordinate system, direction cosines, projections, the plane (angle between two planes, parallel & perpendicular plane, distance of a point from a plane) and the straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloidstraight lines, standard equation of coincides, sphere and ellipsoid.

SKILL MAPPING (CO-PO MAPPING)

Mo	Course I coming Outcome			P	ROC	3RA	AM (OUT	COM	IES ((PO)			
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	1	
	Know the physical explanation of different vector notation and													
CO1	Define Laplace transform, inverse Laplace transform, different types of matrices, and their properties.	3												
CO2	Explain the characteristics of conics and familiarize with straight lines, pair of straight lines, circles, radical axis and center in 2D and 3D co-ordinate systems.	3												
CO3	Calculate length, volume and area of objects related to engineering study by using vector, Apply Laplace transform to ODE and PDEs and the knowledge of geometry in engineering study. Solve the problems of the pair of straight lines, circles, system of circles, parabola, ellipse etc.	3												

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	The knowledge of mathematics, science and engineering sciences has to be applied to describe the complete concept of differential and integral calculus.
CO2-PO1	3	To apply proper and improper integral in the field of engineering study, the knowledge of mathematics, science and engineering sciences is required.
CO3-PO1	3	In order to calculate volume, average, center of gravity and area of any solid revolution object, the knowledge of mathematics, and engineering sciences is needed.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)					
Face-to-Face Learning						
Lecture	42					
Practical / Tutorial / Studio	-					
Student-Centered Learning	-					
Self-Directed Learning						
Non-face-to-face learning	84					
Revision	21					

I	Formal Assessment	
	Continuous Assessment	2
	Mid-Term	1
	Final Examination	3
	Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Weeks	Topics	Remarks
	Definition of Vector and scalers & vector algebra, Scaler and vector products of	
	two vectors and their geometrical interpretation	
Week-1	Definition of Vector and scalers & vector algebra, Scaler and vector products of	
WCCK-1	two vectors and their geometrical interpretation	
	Definition of Vector and scalers & vector algebra, Scaler and vector products of	
	two vectors and their geometrical interpretation	Class
	Triple products and multiple products, Linear dependence and independence of	Test 1,
Week-2	vectors, Differentiation of vectors	Final
	Gradient of scaler functions, Divergence and curl of point functions	Exam
	Physical significance of gradient, divergence and curl	Laam
	Definition of line, surface and volume integral, Integration of Vectors, Green's	
	theorem and application	
Week-3	Definition of line, surface and volume integral, Integration of Vectors, Green's	
	theorem and application	
	Green's theorem and it's application	
	Gauss theorem and application in Engineering	
Week-4	Stoke's theorem and it's application.	
	Introduction to geometry for Engineering and Rectangular co-ordinates,	
	Transformation of co-ordinates	
	Introduction to geometry for Engineering and Rectangular co-ordinates,	
	Transformation of co-ordinates, changes of axes, pair of straight lines, general	
W1- F	equation of second degree and reduction to its standard forms and properties	
Week-5	Changes of axes, pair of straight lines, general equation of second degree and	
	reduction to its standard forms and properties Changes of axes, pair of straight lines, general equation of second degree and	
	reduction to its standard forms and properties	
	Circles (tangents, normal, chord of contact, pole and polar), Equation of	~
	conics, homogeneous equations of second degree, angle between straight lines,	Class
	pair of lines joining the origin to the point of intersection of two given curves	Test 2,
	Circles (tangents, normal, chord of contact, pole and polar), Equation of conics,	Final
Week-6	homogeneous equations of second degree, angle between straight lines, pair of	Exam
	lines joining the origin to the point of intersection of two given curves	
	Circles (tangents, normal, chord of contact, pole and polar), Equation of conics,	
	homogeneous equations of second degree, angle between straight lines, pair of	
	lines joining the origin to the point of intersection of two given curves	

	Application of LT in Eng study	
Week-14	Solve PDE s by Laplace transform	
	Solve ODE s by Laplace transform	
	Convoulution theorem, Evaluation of improper integral, Application of LT	LXam
Week-13	Heaviside formula and it's application	Final Exam
	Partial fraction and it's application in inverse Laplace Transform	Test 3
· · · · • -	Definition of inverse Laplace Transform and it's properties	Class
Week-12	Periodic function with examples, LT of some special function.	Class
	Unit step function and it's application	
., con 11	LT of Integration with application, LT of sine and cosine integral	
Week-11	LT of derivatives and it's application	
	Sufficient condition for existence of LT	
	functions and properties of LT	
	functions and properties of LT Definition of LT and Application of LT for Engineering, LT of some elementary	
	Definition of LT and Application of LT for Engineering, LT of some elementary	
	two given straight lines), standard equation of sphere, ellipsoid, hyperboloid	
	from a plane) and the straight line (coplanar lines, shortest distance between	
Week-10	(angle between two planes, parallel & perpendicular plane, distance of a point	
	Three dimensional co-ordinate system, direction cosines, projections, the plane	
	given straight lines), standard equation of sphere, ellipsoid, hyperboloid	
	from a plane) and the straight line (coplanar lines, shortest distance between two	
	(angle between two planes, parallel & perpendicular plane, distance of a point	
	Three dimensional co-ordinate system, direction cosines, projections, the plane	
	given straight lines), standard equation of sphere, ellipsoid, hyperboloid	
week-9	from a plane) and the straight line (coplanar lines, shortest distance between two	Exam
Week-9	(angle between two planes, parallel & perpendicular plane, distance of a point	Final
	Three dimensional co-ordinate system, direction cosines, projections, the plane	Term
	given straight lines), standard equation of sphere, ellipsoid, hyperboloid	Mid
	from a plane) and the straight line (coplanar lines, shortest distance between two	
	(angle between two planes, parallel & perpendicular plane, distance of a point	
	Three dimensional co-ordinate system, direction cosines, projections, the plane	
	(radical axes, coaxial circles, limiting points	
	Equations of parabola, ellipse in Cartesian and polar coordinates, system of circles	
Week-8	(radical axes, coaxial circles, limiting points	
	Equations of parabola, ellipse in Cartesian and polar coordinates, system of circles	
	circles (radical axes, coaxial circles, limiting points	
	(radical axes, coaxial circles, limiting points Equations of parabola, ellipse in Cartesian and polar coordinates, system of	
	Equations of parabola, ellipse in Cartesian and polar coordinates, system of circles	
	(radical axes, coaxial circles, limiting points	
Week-7	Equations of parabola, ellipse in Cartesian and polar coordinates, system of circles	
*** 1 =	pair of lines joining the origin to the point of intersection of two given curves	
	Circles (tangents, normal, chord of contact, pole and polar), Equation of conics, homogeneous equations of second degree, angle between straight lines,	

C	Components		СО	Blooms Taxonomy
	Class Test/ Assignment	20%	CO1, CO2	C1, C2
Continuous	1-3	20%	CO 2	C3
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1, CO 3	C1-C3
	Mid term	10%	CO2, CO3	C1, C2
	Final Exam		CO1	C1, C2
F			CO2	C2
			CO3	C3
Т	otal Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Murray Spiegel, Seymour Lipschutz, Dennis Spellman, *Vector Analysis*, USA: McGraw-Hill Education, 2009.
- 2. Spiegel, Murray R., and José D. Arias Páez. "Schaum's outline of laplace transformsTransformadas de laplace" *Schaum*, 1998..
- 3. Kandasamy, P., K. Thilagavathy, and K. Gunavathy. Engineering Mathematics. India:S. Chand, 1986.

REFERENCE SITE

Level 2 Term II

	COURSE INFORMATION											
Course Code Course Title	: MATH 209 : Fourier Analysis, Complex Variable Statistics	z anu i	re Contact Hou Hours	ırs		3.00						
	PRE-REQUISITE											
	MATH 101 and MATH 103											
	CURRICULUM STRUCTURE Outcome Based Education (OBE)											
	SYNOPSIS/RATIONALE											
	To teach the students the basic concepts and principles of complex variables, Fourier transform and statistics. It is targeted to provide a basic foundation for mathematics areas Complex number system, Fourier expansion, grouped sample data hypothesis etc. Finally, this course is designed to develop a capability of solving real life problems through complex variable, Fourier integrals and statistics.											
	OBJECTIVES 1. To understand basic knowledge											
	 and complex function and also be expert in recognizing about frequency distribution, Graphical representation of data including stem, moments, Skewness, Kurtosis, grouped sampled data, Estimation, Tests of hypothesis. 2. To familiarize the students with the principle terms such as complex variables, fourier transform and statistics. 3. To provide a physical interpretation of the boundary value problem, Complex Variable and calculating sample data, skewness, kurtosis and related hypothesis test. And also be expert in applying Fourier Analysis, Complex Variables, statistics and their methods of solution in solving complex problems. 											
	LEARNING OUTCOMES											
	Upon completion of the course, the s	tudents will be	able to									
	 Recognize and define complex number system, complex variable, Fourier expansion express the definition and use of the statistical properties. Interpreting the complex function, the integrals of complex functions, Fourier integrated explaining the concept of a frequency distribution, moments, Skewness, Kurtosis, grampled data etc. Measure the integrals of complex functions, Fourier integral and solving the difference equations using Fourier transform, complex engineering problem using them and 											
	implement engineering problem determine null and alternative by		and statis	ucai sa	ınpıır	ig dist	monuon and					
	COURSE OUTCOMES & GENER											
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods					
CO1	Recognize and define complex number system, complex variable, Fourier expansion and express the	PO1	C1-C2	1		1	T, F, ASG					

		_							,				
		n and use of the statistical											
CO2	integrals integral a frequ Skewnes	eting the complex function, the sof complex functions, Fourier and explaining the concept of ency distribution, moments, ss, Kurtosis, grouped sampled	РО	1		C2		1			1, 2	Т, М	T, F
CO3	function the diffe transform problem implement on frequentiation	e the integrals of complex s, Fourier integral and solving rential equations using Fourier	1		C2-C	23	1			1, 2	МТ	', F	
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)												
	COURSE CONTENT												
	Fourier Analysis: Real and complex form. Finite transform: Fourier Integral. Fourier transforms and their uses in solving boundary value problems.										urier		
	Complex Variables. Complex number system, General functions of a complex variable Limits and continuity of a function of complex variable and related theorems, Complex function, differentiation and the Cauchy-Riemann Equations. Line integral of a complex function, Cauchy's Integral Formula, Liouville's Theorem, Taylor's and Lauren Theorem, Singular Residues, Cauchy's Residue Theorem.										plex plex		
	Statistics: Measures of central tendency, Standard deviation, Frequency distribution Graphical representation of data including stem, Leaf and Box Plot, moments, Skewness Kurtosis. Elementary probability theory, Continuous and discontinuous probability distribution, Elementary sampling theory, Treatment of grouped sampled data Regression and correlation, Tests of hypothesis.											ness, oility	
	SKILL	MAPPING (CO-PO MAPP	PING)										
						PRO	GRAM	OUT	COM	ES (F	PO)		I
	No.	Course Learning Outcome		1 2	3	4	5 6	7	8	9	10	11	12
	CO1	Recognize and define con number system, complex van Fourier expansion and express definition and use of the state properties.	riable, ss the	3									
	CO2 Interpreting the complex function the integrals of complex functions for integral and explaining concept of a frequency distribution.		etions, ng the	3									

	CO3	Measure the integrals of complex functions, Fourier integral and solving the differential equations using Fourier transform, complex engineering problem using them and also implement engineering problem based on frequency and statistical sampling distribution and determine null and alternative hypothesis	3												
--	-----	---	---	--	--	--	--	--	--	--	--	--	--	--	--

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO N	MAPPING
---------------------------	---------

JUSTIFICATION FOR CO-10 MAITING								
Mapping	Corresponding Level of Matching	Justification						
CO1-PO1	3	In order to be able to infer/illustrate the physics of semiconductor devices and the operation of different electronic components for strengthening fundamental idea about basic electronics, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to applied.						
CO2-PO1	3	In order to be able to compare the input and output characteristics of different electronic components, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to applied.						
CO3-PO1	3	In order to be able to analyze basic electronic circuits considering existing system models to explore practical complex engineering problems, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to applied.						

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks			
	Basic idea about Fourier Series				
Week-1	Real form of Fourier Series				
	Complex form of Fourier Series, Fourier expansion of different functions				
	Finite transform: Finite Fourier sine transform				
Week-2	Finite Fourier cosine transform	Class Test			
	Infinite Fourier cosine and sine transforms, Fourier Integrals				
	Complex form of Fourier Integrals, Convolution function and Convolution theorem				
Week-3	Fourier transforms in solving boundary value problems				
	Fourier transforms in solving boundary value problems with physical interpretation				
	Complex number system, Complex Variables				
Week-4	Basic operations on complex numbers				
	Basic operations on complex variables				
	Absolute value property, Complex conjugate				
Week-5	Graphical presentation of complex number and variable				
	Polar form of complex numbers	Class Test			
	Graphical representation in polar form	2, Final			
Week-6	Euler formula, De Moivre's Theorem				
	Roots of complex number				
	General functions of a complex variable				
Week-7	Limits of a function of complex variable and related theorems				
	Continuity of a function of complex variable, Continuity of a function of complex variable and related theorems				
	Differentiation of a complex function				
Week-8	The Cauchy-Riemann Equation	Mid Tern Final			
	Line integral of a complex function, Cauchy's Integral Formula				

	Cauchy's Residue Theorem, Liouville's Theorem					
Week-9	Taylor's Theorem					
	Laurent's Theorem					
	Singular Residues					
Week-10	Introduction to Statistics					
	Frequency distribution					
	Measure of central tendency, Standard deviation					
Week-11	Skewness, Moments, Kurtosis					
	Skewness, Moments, Kurtosis					
	Elementary probability theory					
Week-12	Continuous and discontinuous probability distribution					
	Continuous and discontinuous probability distribution	Class Test				
	Continuous and discontinuous probability distribution	3, Final				
Week-13	Elementary sampling theory					
	Regression and correlation					
	Regression and correlation					
Week-14	Tests of hypothesis					
	Tests of hypothesis					

ASSESSMENT STRATEGY

onents	Grading	CO	Blooms Taxonomy
Class Test/	20%	CO1, CO2 CO3	C1, C2 C2, C3
Class Participation ad Class attendance	5+5= 10%	CO1, CO2, CO3	C1, C2, C3
Mid term	10%	CO 2, CO3	C1, C2, C3
		CO 1	CO 1
Exam	60%	CO 2	CO 2
		CO 3	CO 3
Marks	100%		
F	Assignment 1-3 Class Participation d Class attendance Mid term Exam	Assignment 1-3 Class Participation d Class attendance Mid term Exam Model Mo	Assignment 1-3 Class Participation d Class attendance Mid term Exam CO3 CO1, CO2, CO3 CO1, CO2, CO3 CO 1 CO 2 CO 2 CO 3

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Murray R. Spiegel, *Fourier Analysis with Applications to Boundary Value Problems* Schaum's Out-line Series.
- 2. Murray R. Spiegel, *Complex variable* (2nd ed) Schaum's Out-line Series.
- 3. B. Praba, Aruna Chalam and Sujatha, Statistics and Random Processes
- 4. Scheaffer & McClave, Probability and Statistics for Engineers
- 5. John J. Schiller Jr, John J. Schiller Jr and Murray R. Spiegel, *Probability and Statistics* Schaum's Outline, 4th Edition

-			n	T	7	a		
K	4 2 10	0 0	ĸ	20	HI.		МІ	IK

Humanities

Level 1 Term II

	COURSE INFORMATION									
Course Code	: GEBS 101	Lecture Contact Hours	: 2.00							
Course Title	: Bangladesh Studies and Bengali	Credit Hours	: 2.00							
	PRE-REQUISITE									
	None									
	CURRICULUM STRUCTURE									
	Outcome Based Education (OBE)									
	SYNOPSIS/RATIONALE									
	This course has been designed for undergrade the rich history of Bangladesh, and to prove events which eventually led to the form Bangladesh, current trends in economic developments which will make them responsible controlled.	ide them with basic knowled nation of Bangladesh and elopment, legislation, citizen	lge of historical constitution of							
	OBJECTIVES									
	 To equip students with factual knowledge that will enable them to learn the history of Bangladesh. To trace the historical roots of Bangladesh as an independent state focusing on the social, cultural and economic development those have taken place since its independence. To promote an understanding of the development of Bangladesh and its culture. To create an awareness among the students about the Geography, Economy, Politics and Culture of Bangladesh. 									

LEARNING OUTCOMES

	 Upon completion of the course the students will be able to Identify specific stages of Bangladesh's political history, through the ancient, medieval, colonial and post-colonial periods and critically analyze plurality of cultural identities of Bangladesh. Explain the economy and patterns of economic changes through qualitative and quantitative analysis. COURSE OUTCOMES & GENERIC SKILLS
No.	Course Learning Outcome Corresponding Bloom's CP CA KP Assessment
COI	Identify specific stages of Bangladesh's political history, through the ancient, medieval, colonial and post-colonial periods and critically analyze plurality of cultural identities of Bangladesh. Pos Taxonomy CI CA RI Methods Methods C1-C2 T, F, MT
CO2	Explain the economy and patterns of economic changes through qualitative and quantitative analysis. PO-6 C2 - T, F, MT
CO3	hjwmj ijoj, hÉjLIZ J pj¢q-aÉl ®j±¢mL ¢hou pÇf-LÑ djlZj fËcjez PO-6 C2 T, F, MT
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam) COURSE CONTENT
	 Bangladesh Geography: Location, Area, Boundary, Physiography, River system, Forest and Climate, Demography of Bangladesh, Maritime zones. History: Overview of the ancient Bengal; anthropological identity of the Bengali race; main trends in the history of medieval Bengal; Bengal under the East India Company; religious and social reform movements; nationalist movements, division of the Indian sub-continent; language movement 1948-1952; education movement of 1962; six-point movement of 1966; mass uprising of 1969; war of independence and emergence of Bangladesh in 1971, Constitution of Bangladesh, Political Development and Democratic Transition (1971-1990), Political Development (1991- Present), Bangladesh's contribution to world peace and its security, engineering development in Bangladesh (Kaptai Dam, Padma bridge, power plants, Karnaphuli River Tunnel etc) and its impact on socio-economic aspect. Environment, Economy and Culture: Land, Characteristics of tropical monsoon climate, Forests and biomass, Fish, Minerals, Health, Education, Agriculture, Industries, NGOs, Population, Sociological and Cultural aspects of Bangladesh, Economy and National development, Development and Progress of the Millennium Development Goals (MDGs), Public Administration in Bangladesh, State of Good Governance in Bangladesh, Art and Literature, Main traditional cultural events, Vision-2021, Digitalization, Tourism and Natural Resources, Bangladesh and International Relations. picqae (feña, Nôf J Lchai), héilZ, jioi cnri J chlQe, ehÑi cQa feña(hi, mi jioi- hc jQ a Q-ifideiu, am- qlfppic ni we, cehÑi cQa Nôf(fyacjiQi- chiscaisca h-acifideiu, eueQili- pu JuimeEõiq), cehÑi cQa Lchai(ch-ceiqe- Lise el m Cpmij, h‰iioi- jiC-Lm jd¤psce cš), héilJ J ijoi cnri (fecia hiwmi hiei-el ceui, Aöcü pw-nide, hiNūdili, fehic fehQe, HL Lbii cnri (fecia hiwmi hiei-el ceui, Aöcü pw-nide, hiNūdili, fehic fehQe, HL Lbii

fËLjn,fËnjp¢eL	f¢lijoj,fËju	p-jjμQj¢la	¢ieÀjbÑL	në,		n-ël ¢h¢nøj-Bñ				
EµQ¡lZ¢h¢d,				jwmj	Ae¤h	ijc/Ae¤-μRc	lQej,ijh			
pCfËpilZ/piliwn/piliiÑ,fœ/fË¢a-hce lQei,fËhå lQei)										
SKILL MAPPING(C	CO-PO MAPI	PING)								

No	No. Course Learning Outcome	PROGRAM OUTCOMES (PO)											
NO.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
COI	Identify specific stages of Bangladesh's political history, through the ancient, medieval, colonial and post-colonial periods and critically analyze plurality of cultural identities of Bangladesh.						1						
CO2	Explain the economy and patterns of economic changes through qualitative and quantitative analysis.						1						
CO3	hiwmi ijoi, hÉ¡LIZ J p¡¢q-aÉl ®j±¢mL ¢hou pÇf-LÑ d¡IZ¡ fËc¡ez						1						

^{(3 –} High, 2- Medium, 1-low)

JUSTIFICA	TION FOR CO-PO	O MAPPING
Mapping	Corresponding Level of Matching	Justification
CO1- PO6	1	In order to identify specific stages of Bangladesh's political history, through the ancient, medieval, colonial and post-colonial periods and critically analyze plurality of cultural identities of Bangladesh, application of reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems is required.
CO2- PO6	1	In order to explain the economy and patterns of economic changes through qualitative and quantitative analysis, application of reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems is required.
CO3- PO6	1	hịwmi ijoi, hÉiLlZ J pị¢q-aÉl ®j±¢mL ¢hou pÇf-LÑ dịlZị fЁcje, jịa«ijojl öÜ EμQilZ ¢nri, f¢Wa

¢ho-ul ijh Ae¤djhe Llj Hhw aj fËLj-n cr L-l ®ajmi, hjwmj ijoju ®fnjNa cjç¢lL fœjmjf (Official

Correspondence) Hhw pªSen£m | Qej| SeÉ fËj¢aùj¢eL ¢nrj fËcjez

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	56
Revision	14

Formal Assessment	
Continuous Assessment	1
Mid-Term	1
Final Examination	3
Total	103

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SO	THEDITE			
Weeks	Topics	Remarks		
Week-1	Bangladesh Geography: Location, Area, Boundary, Physiography, River System, Forest and Climate. The People of Bangladesh, Demography of Bangladesh.	Class Test		
Week-2	History: Overview of the ancient Bengal; anthropological identity of the Bengali race: main trends in the history of medieval Bengal	1, Final Exam		
Week-3	Bengal under the East India Company; religious and social reform movements; nationalist movements, division of the Indian sub-continent	Exam		
Week-4	Language movement 1948-1952; education movement of 1962; six-point movement of 1966: mass uprising of 1969			
Week-5	War of independence and emergence of Bangladesh in 1971	Class Test		
Week-6	Constitution of Bangladesh, Political Development and Democratic Transition (1971-1990), Vision-2021, Digitalization, Tourism and Natural Resources	2 , Final Exam		
Week-7	Political Development (1991-Present), Bangladesh's contribution to world peace and its security, Economy and National development, Development and Progress of the Millennium Development Goals (MDGs), Public Administration in Bangladesh, State of Good Governance in Bangladesh			
Week-8	Environment, Economy and Culture: Land, Characteristics of tropical monsoon climate, Forests and biomass, Engineering development in Bangladesh (Kaptai Dam, Padma bridge, power plants, Karnaphuli River Tunnel etc) and its impact on socio-economic aspect, Art and Literature, Main traditional cultural events	Mid Term		
Week-9	Fish, Minerals, Health, Education, Agriculture, Industries, NGOs, Population, Sociological and Cultural aspects of Bangladesh, Bangladesh and International Relations	, Final Exam		
Week-10	pi¢qaÉ (fËhå, NÒf J L¢hai), hÉ¡LlZ, ijoi ¢nri J ¢hlQe, ehÑ¡¢Qa fËhå(h¡‰¡m¡ ijo¡-h¢^jQ¾â Q—if¡dÉ¡u, °am- qlfĐp¡c n¡Ù»£,¢ehÑ¡¢Qa NÒf(fy¤Cj¡Q¡- ¢hi§¢ai§oZ h-¾c¡f¡dÉ¡u, eueQ¡l¡- °puc Ju¡m£Eõ¡q)			
Week-11	¢ehÑ¡¢Qa L¢ha¡(¢h-cË¡q£- L¡S£ eSI¦m Cpm¡j, h‰i¡o¡- j¡C-Lm jd¤p§ce cš), hÉ¡LIZ J			
	ijoj ¢nrj (fË¢ja hjwmj hjej-el ¢euj,Aö¢Ü pw-njde,hjNÚdjlj,fËhjc fËhQe	Class Test		
Week-12	HL Lbju fËLjn,fËnjp¢eL f¢lijoj,fËju p-jjμQj¢la ¢ieÀjbÑL në, ¢h¢ieÀ n-ël ¢h¢nøj-Bñ			
	fË-u¡N)			

Week-13	ΕμQilZ¢h¢d,	¢hlQe(Cw-l¢S	®b-L	hjwmj	Ae¤hic/Ae¤-μRc	lQej,ijh					
	pÇfËpilZ/piliwn/piljjÑ,fœ/fË¢a-hce lQei,fËhå lQei)										
Week-14	Revision										

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2	C1, C2
Assessmen t (40%)	Class Participation and Class attendance	5+5= 10%	CO1	C1, C2
	Mid term	10%	CO1, CO2	C1, C2
I	Final Examination		CO1, CO2	C1, C2
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Md. Shamsul Kabir Khan and Daulatunnahar Khanam, Bangladesh Studies
- 2. The Constitution of the People's Republic of Bangladesh
- 3. Akbar Ali Khan, Discovery of Bangladesh
- 4. Sirajul Islam, History of Bangladesh, vols: 1-3
- 5. R C Majumdar, History of Modern Bengal, vol: 1
- 6. Dr. Abdul Mumin Chowdhury, Dynastic History of Bengal
- 7. William Van Schendel, A History of Bangladesh
- 8. Harun Er Rashid, Geography of Bangladesh
- 9. Sirajul Islam, Banglapedia: National Encyclopedia of Bangladesh, vols: 1-10
- 10. R. A. Chandra, History of Bengal (Mughall Period 1526-1765)
- 11. Nitesh Sengupta, Land of Two Rivers
- 12. A History of Bangladesh: Cambridge University Press

mnvqK cvV"eB

- K| weGgG K¨v‡WU †cÖwm evsjv|
 - L| evsjv e"vKiY W. kvnRvnvb gybxi, ÷z‡W>Um cvewj‡Kkbm|
 - M| cÖeÜmsMÖn XvKv wek^we`"vjq|
 - N| MímsMÖn XvKv wek^we`"vjq|
 - O| KweZvmsMÖn XvKv wek^we`"vjq|
 - P| evsjv evbvb Awfavb evsjv GKv‡Wwg KZ...©K cÖKvwkZ|
 - Q| evsjv D"PviY Awfavb evsjv GKv‡Wwg KZ...©K cÖKvwkZ|
 - R| cÖwgZ evsjv e"vKiY I wbwg©wZ (Z"Zxq LĐ) Aa"vcK W. nvqvr gvgy` I Aa"vcK
 - W. †gvnv¤§` Avgxb|
 - S | evsjv fvlvi cª‡qvM I Accª‡qvM evsjv GKv‡Wwg KZ...©K cÖKvwkZ |

REFERENCE SITE

Level 1 Term II

Communicative English I

COURSE INFORMATION									
Course Code	: LANG 102	Contact Hours	: 3.00						
Course Title	: Communicative English -I	Credit Hours	: 1.50						

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The English language course is designed for the students to develop their competence in communication skills for academic purposes emphasizing speaking, reading, listening and writing. The approach will be communicative and interactive and will involve individual, pair and group work. Students will be exposed to diverse text types to refine their reading skills, engaging in activities and discussions that foster effective writing type. The course incorporates a wide range of reading texts to develop students' critical thinking which is one of the most essential elements required to write a good piece of academic writing. Special emphasis is placed on the various forms of essay including descriptive, narrative, cause-effect, compare-contrast, and argumentative. Upon completion of this course, student should demonstrate proficiency in communication across diverse contexts, engage in group activities, and deliver formal speech for academic, professional and social purposes. This course also incorporates classroom instructions to provide guidelines on presentations and communication skills. Addionally, the course emphasizes providing constructive feedback on students' oral performances.

OBJECTIVES

- To develop the four basics skills of English language, i.e. listening, speaking, reading and writing.
- To enhance students' interpersonal skills through participation in various group interactions and activities.
- To improve students' pronunciation to enhance comprehensibility in both speaking and listening.
- To gain proficiency in crafting well- organized paragraphs and learn to edit and revise both their own as well as peer's writing.

COURSE CONTENT

Speaking: Introduction to Language: Introducing basic skills of language. English for Science and Technology Self-introduction and introducing others: How a speaker should introduce himself to any stranger / unknown person / a crowd. Name, family background, education, experience, any special quality/interest, likings/disliking, etc. Asking and answering questions,

Expressing likings and disliking; (food, fashion etc.) Asking and giving directions Discussing everyday routines and habits, Making requests/offers/invitations/excuses/apologies/complaints Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Practicing storytelling, Narrating personal experiences/Anecdotes Telephone conversations (role play in group or pair) Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation)

Listening: Listening and understanding: Listening, note taking and answering questions; Students will listen to recorded text, note down important information and later on will answer to some questions Difference between different accents: British and American accents; Documentaries from BBC and CNN will be shown and students will try to understand; Listening to short conversations between two persons/more than two.

Reading: Reading techniques: scanning, skimming, predicting, inference; Reading Techniques: analysis, summarizing and interpretation of texts.

Writing: Introductory discussion on writing, prewriting, drafting; Topic sentence, paragraph development, paragraph structure, describing a person/scene/picture, narrating an event Paragraph writing, Compare-contrast and cause- effect paragraph.

COL	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE OUTCOMES (COs)		PROGRAMME OUTCOMES (POs)										
	OUTCOMES (COS)	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12
1	Communicate in English quickly and smartly using the techniques learnt in the class.	✓											
2	Understand the techniques of academic reading and writing	✓											
3	Communicate ideas and opinions effectively within the shortest possible time										✓		
4	Excel in oral and written communication/ Presentation										√		

	competency										
COURSE OUTCOMES AND GENERIC SKILLS											

No.	Course Outcomes	Corresponding POs	Bloom's	CP(WP)	CA(EA)	KP(WK)	Assessment Methods
CO1	Communicate in English quickly and smartly using the techniques learnt in the class.	PO1	L2	-	-	1	Assignment, Quiz
CO2	Understand the Techniques of academic reading and writing	PO1	L3	-	-	1	Project/ Assignment, Quiz
CO3	Communicate ideas and opinions effectively within the shortest possible time		L4	1	1	1	Project, Assignment, Quiz
CO4	Excel in oral and written communication/ Presentation competency	PO10	L5	-	-	2	Project/ Assignment, Quiz

WP= Washington Accord Complex Problem Solving/ CP= Complex Problem Solving; EA= Engineering Activities/ CA= Complex Activities; WK= Washington Accord Knowledge Profile/ KP= Knowledge Profile

Independent Learning	
Individual learning	-
Preparation for Report	-
Assessment	

Continuous assessment(Descriptive writing	04
Reading Test, Listening Test,	-
Public Speaking)	-
Report Submission	
Presentation	
Total	88

TEACHING METHODOLOGY

Lecture and Discussion, Tutorial, Assignment, Report

TEACHING SCHEDULE

Week	Topics	Remarks
	Introduction to Language: Introducing basic skills of language; English for Science and Technology	Assignment , Project,
	Self-introduction and introducing others: How a speaker should	Quiz
1	introduce himself to any stranger / unknown person / a crowd; Name, family background, education, experience, any special	
	quality/interest, likings/disliking, etc. Self-introduction and introducing others: How a speaker should introduce himself to any stranger / unknown person / a crowd;	
	Name, family background, education, experience, any special quality/interest, likings/disliking, etc.	
2	Asking and answering questions, Expressing likings and disliking; (food, fashion etc.) Asking and giving directions	
3	Discussing everyday routines and habits, making requests/ offers/ invitations/ excuses/ apologies/ complaints	
4	Describing personality, discussing and making plans (for a holiday or an outing to the cinema), Describing pictures / any incident / event	
5	Practicing storytelling, Narrating personal experiences/Anecdotes	
6	Telephone conversations (role play in group or pair); Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher —student conversation)	
7	Listening and understanding: Listening, note taking and answering questions; Students will listen to recorded text, note down important information and later on will answer to some questions	

8	Difference between different accents: British and American accents; Documentaries from BBC and CNN will be shown and students will try to understand
9	Listening to short conversations between two persons/more than two
10	Reading techniques: scanning, skimming, predicting, inference;
11	Reading techniques: scanning, skimming, predicting, inference;

12	Introductory discussion on writing, prewriting, drafting;
13	Topic sentence, paragraph development, paragraph structure, describing a person/scene/picture, narrating an event
14	Paragraph writing, Compare-contrast and cause- effect paragraph

ASSESSMENT STRATEGY

Components	Grading	СО	Blooms Taxonomy
Continuous			
Assessment (Compulsory)			
Descriptive writing	20%	CO1, CO2, CO3, CO4	L2, L3, L4, L5
Reading Test	15%		
Listening Test	15%		
Public Speaking	20%		
Group Presentation	30%	CO1, CO2, CO3, CO4	L2, L3, L4, L5
Total Marks	100%		

REFERENCE BOOKS

- 1. Langan, J. (2005). College Writing Skills with Readings (6th Ed). McGraw-Hill Publication.
- 2. Interactions 1 (Reading), John Langan, Latest edition, McGraw-Hill Publication
- 3. Jones, L. (1981). Functions of English. (Student's Book, 2nd Ed.) Melbourne, Australia: Cambridge University Press.
- 4. Dixon, R.J. (1987). Complete course in English. (Book 4). New Delhi, India: Prentice Hall of India. (For book presentation).
- 5. From Paragraph to Essay Maurice Imhoof and Herman Hudson Headway Series Advanced Level (2 parts with CDs): Oxford University Press Ltd.
- 6. Speak like Churchill stand like Lincoln James C. Humes.
- 7. Cambridge IELTS Practice Book.
- 8. Selected Sample Reports and Selected Research Articles.

Level 2 Term I

Communicative English II

COURSE	INFORM	IATION
---------------	--------	--------

PRE-REQUISITE

LANG 102

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The English language course is designed for the students to develop their competence in communication skills for academic purposes emphasizing speaking, reading, listening and writing. The approach will be communicative and interactive and will involve individual, pair and group work. Students will be exposed to diverse text types to refine their reading skills, engaging in activities and discussions that foster effective writing type. The course incorporates a wide range of reading texts to develop students' critical thinking which is one of the most essential elements required to write a good piece of academic writing. Special emphasis is placed on the various forms of essay including descriptive, narrative, cause-effect, compare-contrast, and argumentative. Upon completion of this course, student should demonstrate proficiency in communication across diverse contexts, engage in group activities, and deliver formal speech for academic, professional and social purposes. This course also incorporates classroom instructions to provide guidelines on presentations and communication skills. Addionally, the course emphasizes providing constructive feedback on students' oral performances.

OBJECTIVES

- To develop English language skills to communicate effectively and professionally.
- To strengthen students' presentation skills.
- To develop competency in academic reading and writing.

COURSE CONTENT

Reading: Reading Comprehension: Practice using different techniques Academic reading: comprehension from departmental or subject related passages; Vocabulary for Engineers (some common Engineering terms for both general and dept specific); Reading subject specific text to develop vocabulary

Writing: Writing semi-formal, Formal/official letters, Official E-mail Applying for a job: Writing Cover Letter and Curriculum Vitae; Essay writing: writing steps, principles and techniques, outlining, revising, editing, proofreading; Narrative and descriptive writing: comparison-contrast and cause – effect, argumentative and opinion expression, assignment writing; Analyzing and describing graphs or charts; Practicing analytical and argumentative writing

Speaking: Public Speaking: Basic elements and qualities of a good public speaker; Set Speech and Extempore Speech: How to get ready for any speech – set or extempore. Individual / Group presentation: How to be ready for presentation, prepare script for good speech, preparing power point

slides, etc. Selected books/Selected stories for presentation.

Listening: Listening to long lecture on some topics, Listening and understanding speeches/lectures of different accent.

COU	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE OUTCOMES (COs)		PROGRAMME OUTCOMES (POs)										
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12
1	Understand the techniques of academic reading and become familiar with technical vocabularies.	✓											
2	Understand the techniques of effective academic writing including research article/report writing.	✓											
3	Communicate effectively to present their reports and research work within the shortest possible time										√		
4	Analyze any problem critically, interpret data and synthesize information to provide valid conclusions.										✓		
COU	JRSE OUTCOMES AND GENE	ERIC	SKII	LLS									

No.	Course Outcomes	Corresponding POs	Bloom's	CP(WP)	CA(EA)	KP(WK)	Assessment Methods
CO1	Understand the techniques of academic reading and become familiar with technical vocabularies.	PO1	L2	-	-	1	Assignment, Quiz
CO2	Understand the techniques of effective academic writing including research article/report writing.	PO1	L3	-	-	1	Project/ Assignment, Quiz

CO3	Communicate effectively to present their reports and research work within the shortest possible time	PO10	L4	-	-	1	Project, Assignment, Quiz
CO4	Analyze any problem critically, interpret data and synthesize information to provide valid conclusions.	PO10	L5	-	-	2	Project/ Assignment, Quiz

WP= Washington Accord Complex Problem Solving/ CP= Complex Problem Solving; EA= Engineering Activities/ CA= Complex Activities; WK= Washington Accord Knowledge Profile/ KP= Knowledge Profile

Assessment	
Continuous assessment (Writing Test	04
Reading Test Listening Test	
Public Speaking)	
Report Submission	-
Presentation	-
Total	88

TEACHING METHODOLOGY

Lecture and Discussion, Problem Based Learning (PBL)

TEACHING SCHEDULE

Week	Topics	Remarks
1	Reading Comprehension: Practice using different techniques	Assignment, Project, Quiz
2	Academic reading: comprehension from departmental or subject related passages	Troject, Quiz

3	Vocabulary for Engineers (some common Engineering terms for both general and dept specific) Reading subject specific text to develop vocabulary				
4	Writing semi-formal, Formal/official letters, Official E-mail				
5	Applying for a job: Writing Cover Letter and Curriculum Vitae Practicing storytelling, Narrating personal experiences/Anecdotes				
6	Essay writing: writing steps, principles and techniques, outlining, revising, editing, proofreading;				
7	Narrative and descriptive writing: comparison-contrast and cause – effect, argumentative and opinion expression, assignment writing;				
8	Analyzing and describing graphs or charts				
9	Practicing analytical and argumentative writing				
10	Public Speaking: Basic elements and qualities of a good public speaker				
11	Set Speech and Extempore Speech: How to get ready for any speech – set or extempore.				
12	Individual / Group presentation: How to be ready for presentation, prepare script for good speech, preparing power point slides, etc. Selected books/Selected stories for presentation.				
13	Listening to long lecture on some topics				
14	Listening and understanding speeches/lectures of different accents				

ASSESSMENT STRATEGY

Continuous Assessment					
Class participation	-				
Writing Test	20%	CO1 CO2 CO2 CO4	12 12 14 15		
Reading Test	15%	CO1, CO2, CO3, CO4	L2, L3, L4, L5		
Listening Test	15%				
Public Speaking	20%				
Group Presentation	30%	CO1, CO2, CO3, CO4	L2, L3, L4, L5		
Total Marks	100%				

REFERENCE BOOKS

- 1. Jones, L. (1981). Functions of English. (Student's Book, 2nd Ed.) Melbourne, Australia: Cambridge University Press.
- 2. Dixon, R.J. (1987). Complete course in English. (Book 4). New Delhi, India: Prentice Hall of India. (For book presentation).
- 3. Langan, J. (2005). College Writing Skills with Readings (6th Ed). McGraw-Hill Publication.
- 4. Interactions 1 (Reading), John Langan, Latest edition, McGraw-Hill Publication
- 5. Headway Series Advanced Level (2 parts with CDs): Oxford University Press Ltd.
- 6. Speak like Churchill stand like Lincoln James C. Humes.
- 7. Cambridge IELTS Practice Book h. Selected Sample Reports and Selected Research Articles

Level 1 Term I

	COURSE INFORMATION						
Course Code	: GES 101	Leo	cture Contact I	Hours	: 2.	00	
Course Title	: Fundamentals of Sociology	Cre	redit Hours		: 2.00		
	PRE-REQUISITE						
	None						
	CURRICULUM STRUCTURE						
	Outcome Based Education (OBE)						
	SYNOPSIS/RATIONALE						
	This course has been designed to understand the human inter-personal relationship and human psychology in the society and to apply this knowledge in the practical field as an engineer through the study of varied societies and cultures.						
	OBJECTIVES						
	 To learn basics, scopes and persp To understand societal and culture To synthesis between social prob 	ral issues in nati	ional, global ar		nmental	context.	
	LEARNING OUTCOMES						
	 Upon completion of the course, the students will be able to Understand the basic nature, scope and perspective of sociology and the criteria of social research process and methodologies. Apply contextual knowledge to assess societal and cultural issues in national and glob context and also environmental context for sustainable development. Analyze social problem, social stratifications, socialism, capitalism and economic life and political issues. 				l and global		
	COURSE OUTCOMES & GENER	RIC SKILLS					
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	CP C	A KP	Assessment Methods	
COI	Understand the basic nature, scope and perspective of sociology and the criteria of social research process and methodologies.	PO10	C1	-	1	T, ASG, F	
CO2	Apply contextual knowledge to assess societal and cultural issues in national and global context and also environmental context for sustainable development.	onal also PO6 C2 - 1				Q, F	
CO3	Analyze social problem, social stratifications, socialism, capitalism and economic life and political issues.	PO6, PO10	C2		2	MT, F	

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test ; PR – Project ; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Main Contents: Understanding society, social phenomena and social change.

Detail Contents: Nature and scope Sociological imagination, Perspectives of sociology, Stages of social research and research method, Culture and civilization, Socialization and self - development, Globalization and social changes, Media and individual, Social organizations and social problems, social stratification; industrial revolution, Capitalism and socialism, Work and economic life, Environment and human activities, Climate change and global risk, Population and human society, Urbanization and city development, Social changes and technology.

SKILL MAPPING (CO-PO MAPPING)

Ma	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
No. Course Learning Outcome		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understand the basic nature, scope and perspective of sociology and the criteria of social research process and methodologies.										1		
CO2	Apply contextual knowledge to assess societal and cultural issues in national and global context and also environmental context for sustainable development.						2						
CO3	Analyze Social problem, social stratifications, socialism, capitalism and economic life and political issues.						2				1		

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO10	3	In order to understand the basic nature, scope and perspective of sociology and the criteria of social research process and methodologies, it is required to communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

CO2-PO6	In order to apply contextual knowledge to assess societal and cultural issues in national and global context and also environmental context for sustainable development, application of reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems is required.					
CO3-PO6	3	In order to analyze Social problem, social stratifications, socialism, capitalism and economic life and political issues, application of reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems is required.				
CO3-CO10	2	In order to analyze Social problem, social stratifications, sociali economic life and political issues, it is required to communic				
		complex engineering activities with the engineering community at large, such as being able to comprehend and write effective documentation, make effective presentations, and give an instructions.	reports and design			
TEACHING I	LEARNING STRATE	EGY				
Teaching and I	Learning Activities		Engagement (hours)			
	Face-to-Face Learning Lecture Practical / Tutorial / Studio Student-Centered Learning					
	Self-Directed Learning Non-face-to-face learning Revision					
	Formal Assessment Continuous Assessment Mid-Term Final Examination					
	Total					
TEACHING N	METHODOLOGY					
Lecture and Di	scussion, Co-operative	e and Collaborative Method, Problem Based Method				
COURSE SCH	HEDULE					
Weeks	Topics					
Week-1	Definition, nature and scope of sociology, Sociological imagination					
Week-2	Perspectives of sociology, Orientation of sociological theories					
Week-3	Social research and its process, Research designs and techniques					
Week-4	Introducing culture and its variations, civilization					
Week-5	Defining family an self	d its changes, Socialization process and development	of			

Week-6 Week-7	Introducing globalization and its impact on human life, Factors responsible to globalization Media and its impact in modern society, Addressing social problems of Bangladesh	Class Test 2, Final Exam
Week-8	Introducing social groups and organizations, Introducing bureaucracy and good governance	
Week-9	Introducing social stratifications and social inequality, Poverty and its types and dimensions	Mid Term
Week-10	Industrial revolution and aftermath, Urbanization and city development	
Week-11	Capitalism: features and influence, Socialism: features and influence	
Week-12	Environment and human activities, Climate change and global risk	Class Test
Week-13	Population of Bangladesh: problem or prospect, Crime and deviance: a brief analysis	3, Final Exam
Week-14	Review	

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1	C1
Assessmen t (40%)	Class Participation and Class attendance	5+5= 10%	CO2	C2
	Mid term	10%	CO3	C2
Final Examination		60%	CO1-CO3	C2-C4
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Brinkerhoff, David B., Suzanne T. Ortega, and Rose Weitz. *Essentials of sociology*. Cengage Learning, 2013.
- 2. Rao, CN Shankar. "Sociology: Primary Principles." New Delhi: S. Chand and Company Ltd (2002).
- 3. Giddens, Anthony, ed. *Human societies: an introductory reader in sociology*. Cambridge, Eng.: Polity Press, 1992.

REFERENCE SITE

6.1. b. Department of EECE

Level 1 Term I

	COURSE INFORMATION						
Course Code Course Title	: EECE 119 : Fundamentals of Electrical Circuit Analysis	Lecture Contact Hours Credit Hours	: 3.00 : 3.00				
	PRE-REQUISITE						
	None						
	CURRICULUM STRUCTURE						
	Outcome Based Education (OBE)						

	SYNOPSIS/RATIONALE									
	To learn and familiarize the basics o and AC circuit.	To learn and familiarize the basics of electric and magnetic circuit as well as the analysis of DC and AC circuit.								
	OBJECTIVES									
	 To familiarize students with base concepts (Superposition, Source To introduce the definition and power) along with other power of power transfer). To impart knowledge of AC power field. To impart in depth knowledge of configurations (Y, Δ). To articulate the concepts of convention) three phase and poly 	Transformation of derivation of concepts (Power ver conservation balanced and ur magnetically of	and theorem AC power (A factor, Compand measurer and measurer abalanced 3 p.	ns (The Averagolex polex	eveninge power, ito be a	, North wer, In maxim applied , their	con). Instantaneous num average d in practical analysis and			
	LEARNING OUTCOMES	OUTCOMES								
	Upon completion of the course the state. 1. Understand the basic circuit la 2. Apply the circircut theorems a 3. Analyze the magnetic circuits.	aws to solve the AC	and DC circ	cuits						
	COURSE OUTCOMES & GENE	RIC SKILLS								
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods			
CO1	Understand the basic circuit laws	1	C2	-	-	1	T, F, Q			
CO2	Apply the circuit theorems to solve the AC and DC circuits	2	C2, C4	-		2	T, MT, F			
CO3	Analyze the magnetic circuits and three phase circuits	1	C4	1		2	MT, F, ASG			
	(CP- Complex Problems, CA-Complex Quiz; ASG – Assignment; Pr – Presenta									
	COURSE CONTENT									

Laws of electric circuit: Ohm's Law, Kirchhoff's voltage and current laws, delta-wye transformation.

Electrical networks: network analysis methods of branch and loop currents, method of node pair voltages, Thevenin's and Norton's theorems.

Magnetic concepts and units: magnetic field, right hand rule, magnetic flux density, Biot-Savart law, magnetic field intensity, measurement of magnetic flux, energy of magnetic field, characteristic of ferromagnetic materials, B-H curve, hysteresis loss, eddy current and eddy current loss, total core loss.

Electromagnetic forces: forces upon a current carrying conductor and charged particles moving in a magnetic field. Electromagnetic torque. Electromagnetic induction and emf; Lenz's law, BlV rule.

General concepts of AC system: Instantaneous current, voltage and power, R, L, C, RL, RC and RLC branches.

Effective current and voltage: Average values, form factor, crest factor, real & reactive powers and power factor. Introduction to vector algebra and Phasor diagram. Impedance in polar and Cartesian forms.

Single phase circuit analysis: Impedance in series, parallel branches, series-parallel circuits. Network analysis using Thevenin's theorem.

Balanced poly phase circuits: Three phase, four wire system and three phase, three wire systems, balanced wye and delta connected loads, power in balanced systems. Balanced three phase circuit analysis and power measurement.

SKILL MAPPING(CO-PO MAPPING)

NI.	Course I coming Outcome	PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Understand the basic circuit laws	3											
CO2	Apply the circuit theorems to solve the AC and DC circuits		3										
CO3	Analyze the magnetic circuits and three phase circuits	3											

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification				
CO1-PO1	3	The knowledge of mathematics, science and engineering fundamentals has to be applied to learn the operation and construction of electrical machines.				
CO2-PO2	3	In order to understand the design features of ac machines, the characteristics of ac machines need to be identified and analyzed.				
CO3-PO1	3	In order to analyze basic electronic circuits considering existing system models to explore practical complex engineering problems the knowledge of mathematics, science and electrical science is required.				

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning Lecture	42
Practical / Tutorial / Studio Student-Centered Learning	- -

Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SC	HEDULE					
Weeks	Topics	Remarks				
Week-1	Laws of electric circuit: Ohm's Law, Kirchhoff's voltage and current laws, delta-wye transformation.	- Class Test				
Week-2 Laws of electric circuit: Ohm's Law, Kirchhoff's voltage and current laws,						
Week-3	Electrical networks: network analysis methods of branch and loop currents	Exam				
Week-4	Electrical networks: network analysis methods of branch and loop currents					
Week-5	Method of node pair voltages, Thevenin's and Norton's theorems.					
Week-6	Magnetic concepts and units: magnetic field, right hand rule, magnetic flux density,	Class Test 2, Final Exam				
Week-7	Biot-Savart law, magnetic field intensity, measurement of magnetic flux, energy					
Week-8	Week-8 B-H curve, hysteresis loss, eddy current and eddy current loss, total core loss. Introduction to magnetic circuits.					
Week-9	Electromagnetic forces: forces upon a current carrying conductor and charged particles moving in a magnetic field.	Term, Final				
Week-10	Electromagnetic torque; Electromagnetic induction and emf; Lenz's law, Blv rule.	Exam				
Week-11	General concepts and definitions: Instantaneous current, voltage and power, R, L, C, RL, RC and RLC branches.					
Week-12 Week-12 Effective current and voltage: average values, form factor, crest factor, power real and reactive. Introduction to vector algebra. Impedance in polar and Cartesian forms. Sinusoidal single phase circuit analysis. Impedance in series, parallel branches, series-parallel circuits. Network analysis – Thevenin's theorem.						
Week-13	Eve					
Week-14	Week-14 Three phase, three wire systems, balanced wye loads, balanced delta loads, power in balanced systems, power factor. Balanced three phase circuit analysis and power measurement.					
ASSESSMEN	NT STRATEGY					

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1- CO3	C2, C4, C5
Assessmen t (40%)	Class Participation and Class attendance	5+5= 10%	CO1	C2
	Mid term	10%	CO3	C4
F	inal Examination	60%	CO1-CO3	C2, C4, C5
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. R.L. Boylestad, Introductory Circuit Analysis, 13th Edition, Pearson, 2015
- 2. James. W. Nilson, *Introductory Circuits for Electrical & Computer Engineering*, Prentice Hall of India Private Ltd.
- 3. Fitzgerald, Basic Electrical Engineering, McGraw-Hill International.
- 4. Mary Atwater, Electricity and Magnetism, Macmillan/McGraw-Hill School Publishing Company, 1993
- 5. Robert P. Ward, Introduction to Electrical Engineering, Prentice Hall of India Private Ltd.
- 6. Richard C. Dorf & James A. Svoboda, Introduction to Electric Circuits, John Wiley & Sons Inc.
- 7. Charles K. Alexander, Fundamentals of Electric Circuits, McGraw-Hill International.

REFERENCE SITE

Level 1 Term I

	COURSE INFORMATION						
Course Code	: EECE 120	Lecture Contact Hours	:1.50				
Course Title	: Fundamentals of Electrical Circuit Analysis Sessional	Credit Hours	: 0.75				
	PRE-REQUISITE						
	EECE 119						
	CURRICULUM STRUCTURE						
	Outcome Based Education (OBE)						
	SYNOPSIS/RATIONALE						
	To learn and familiarize the basics of electrical mach circuit.	nines as well as the analysi	s of electronic				
	OBJECTIVES						
	 To learn the basic of electrical machines, their applications and unit. To study the different electronic circuits and apply those in solving complex engineering problem. 						
	LEARNING OUTCOMES						

	Upon co	ompletion of	the course, the s	tudent	s w	ill be	abl	e to								
	2. Var	y circuit para	edge of basic elemeters in order elementary circ	to ach	ieve	opti	miz	ed ci	rcu	it oj	pera	tion.		·	ompo	nents
	COUR	SE OUTCON	MES & GENE	RIC S	KIL	LS										
No.		ourse Learning		Corre	espoi POs	_		Bloc Taxo			CP) (CA	KP	1	ASG
CO1	electrica network	ks practically.	onents and	PO	01, F	O5		C	:3					2	R	L,Q,T
CO2	Vary ci achieve operation	optimiz	neters in order to			P	6		1			5	R	L,Q,T		
CO3	related		nentary circuit using circuit nents		PO3		C	5		1		1	3	R	,Q,T	
			ns, CA-Complex ent; Pr – Presenta													t; Q –
	COURSE CONTENT															
	 Ver Ver Fan Practical 	rification of S	VL and KCL hevenin's theore uperposition the with AC waves a	orem	ıdy	of R	-L-(C seri	es (circ	uits					
	SKILL	MAPPING	(CO-PO MAPI	PING))											
	No	Course I	acomina Outcom	_			P	ROG	RA	M C)UT(COM	IES ((PO)		
	No.		Learning Outcome		1	2	3	4	5	6	7	8	9	10	11	12
	CO1	electrical con practically.	knowledge of b aponents and netw	vorks	1				2							
	CO2	achieve optin	nized circuit opera	meters in order to direction.			2		2							
	СОЗ	related pro	different elementary circuit projects using circuit and components 3													
		h, 2- Medium,														
JUSTIFICAT	_		PPING													
Mapping		esponding f Matching						stific								
CO1-PO1		1	For constructing engineering knows	wledg	e is 1	equi	red (e.g. ι	ınde	ersta	ndin	g sei	ries- _l	paralle	el circ	uitry).
CO1-PO5		2	In some cases, students face some design related problems while constructing electronic circuit and those complex problems need to be attained by themselves													

too.

CO2-PO3	2	By doing project work, ability to design something that meets specified needs would be formed.
CO2-PO5	2	To study the performance characteristics of the designed system through simulation, knowledge of modern engineering tools used in the practice areas is needed.
СОЗ-РОЗ	3	In order design a communication system with defined design parameters, knowledge is needed that supports engineering design in a practice area

TEACHING LEARNING STRATEGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagemen t (hours)
Face-to-Face Learning	

Lecture	14
Practical / Tutorial / Studio	28
Student-Centered Learning	-
Self-Directed Learning	
Preparation of Lab Reports	14
Preparation of Lab Test	10
Preparation of presentation	9
Preparation of Quiz	9
Engagement in Group Projects	
Formal Assessment	
Continuous Assessment	14
Final Quiz	1
 Total	90

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Construction and operation of simple electrical circuits	
Week-2	Verification of KVL and KCL	
Week-3	Verification of Thevenin's theorem	
Week-4	Verification of Superposition theorem	
Week-5	Familiarization with AC waves and study of R-L-C series circuits	
Week-6	Practice Lab	
Week-7	Lab Test	

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy	
Continuous Assessment (40%)	Conduct of Lab Tests/Class Performance	25%	CO1, CO2	C3, C5	
	Report Writing/ Programming	15%	CO1, CO2	C3, C5	
	Mid-Term Evaluation (exam/project/assignment)	20%	CO1, CO2	C3, C5	
	Viva Voce	10%	CO1, CO2	C3, C5	
	Final Evaluation (Lab Quiz)	30%	CO1, CO2	C3, C5	
Total Marks		100%			

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Stephan J. Chapman, Electrical Machinery Fundamental, McGraw-Hill.
- 2. B.L Theraja & A.K. Theraja , A Text Book of Electrical Technology (AC, DC Machines), S. Chand & Company Ltd.
- 3. Nagrath and Kothan, Electrical Machines, McGraw-Hill.
- 4. Stephan J. Chapman, Electrical Machinery Fundamental, McGraw-Hill.
- 5. Adel S. Sedra & Keneth C. Smith, Micro Electronics Circuits, Oxford University Press.
- 6. MD. H. Rashid, Power Electronics (Circuits, devices & Application), Prentice Hall of India.

REFERENCE SITE

Level 2 Term II

	COURSE INFORMATION					
Course Code	: EECE 221	Lecture Contact Hours	: 3.00			
Course Title	: Electrical and Electronics Technology	Credit Hours	: 3.00			
	PRE-REQUISITE					
	EECE 119					
	CURRICULUM STRUCTURE					
	Outcome Based Education (OBE)					
	SYNOPSIS/RATIONALE					

To develop a strong foundation in the basic operating principle, constructions, characteristic features, applications etc. of AC electrical machinery like synchronous generator, synchronous motor and three phase and single-phase induction motors and special motors. The emphasis has been given on both physical insight and analytical techniques. The subject material covered here will provide the basis for understanding many real-world electric machinery applications as well as the foundation for advanced courses in electric machinery design and control. To teach the students the concepts, principles and working of basic electronic circuits (Diodes, BJTs). It is targeted to provide a basic foundation for technology areas like electronics devices (rectifiers, voltage regulators and amplifiers), industrial electronics as well as instrumentation, control systems and various electronic circuit design. Finally, this course is designed to develop a designing capability involving real life practical problems.

OBJECTIVES

- 1. To impart basic knowledge on the physics of semiconductor along with the types, specification and standard values of passive and active components of electronic circuits.
- **2.** To develop a strong foundation on AC electrical machines (synchronous machines, induction machines, universal machines etc) with a special focus on operating principle, identification of parts and accessories, constructional features, types etc
- **3.** To familiarize with basic electronic circuits (rectifiers, voltage regulators and amplifiers), their working principles, design criteria and system components.
- **4.** To develop a broad idea on application of machines in practical industrial and domestic field.

Upon completion of the course, the students will be able to 1. Explain the fundamental operation, basic construction and classification of different AC and DC machines 2. Interpret and analyze the performance characteristics of different electrical machines e.g. transformers, DC and AC machines 3. Analyze basic electronic circuits considering existing system models to explore practical complex engineering problems. 4. Design various electronic circuits using both passive and active components to solve the real-life engineering problems. COURSE OUTCOMES & GENERIC SKILLS No. Course Learning Outcome Corresponding Bloom's Taxonomy CP CA KP Assessment Methods Explain the fundamental operation,

No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the fundamental operation, basic construction and classification of different AC and DC machines		C2			1, 2	T, F
CO2	Interpret and analyze the performance characteristics of different electrical machines e.g. transformers, DC and AC machines	2	C2, C4			1-3	T, F
CO3	Analyze basic electronic circuits considering existing system models to explore practical complex engineering problems.	2	C4			1-3	MT, F

CO4	Design various electronic circuits using both passive and active components to solve the real-life engineering problems.	3	C6	1		3-5	ASG, Pr	
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)							
	COURSE CONTENT							
	Transformer: Principles, types, performances and characteristics of single-phase transformers, introduction to Auto Transformer. DC generators: Principles, types, performances and characteristics of DC generators. DC Motors: Principles, types, performances and characteristics. Speed control and starters of motors, Permanent Magnet Brushless dc (BLDC) Motor Drives. AC Machines: Principles of single-phase induction motor and its equivalent circuits, Introduction to three phase induction motor and synchronous machines. Electronics: Introduction to semiconductor, characteristics of semiconductor diodes and their types, LEDs, Applications of different types of diodes, Characteristics of BJT and their DC Biasing, Use of transistors as a switch, Introduction to FET, MOSFET, IGBT, SCR.							
	SKILL MAPPING (CO-PO MAPPING)							

NT.			PROGRAM OUTCOMES (PO)									
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11
CO1	Explain the fundamental operation, basic construction and classification of different AC and DC machines	3										
CO2	Interpret and analyze the performance characteristics of different electrical machines e.g. transformers, DC and AC machines		3									
CO3	Analyze basic electronic circuits considering existing system models to explore practical complex engineering problems.		3									
CO4	Design various electronic circuits using both passive and active components to solve the real-life engineering problems.			2								

(3 – High, 2- Medium, 1-low)

JUSTIFICAT	JUSTIFICATION FOR CO-PO MAPPING								
Mapping	Corresponding Level of Matching	Justification							
CO1-PO1	3	In order to be able to infer/illustrate the physics of semiconductor devices and the operation of different electronic components for strengthening fundamental idea about basic electronics, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to applied.							
CO2-PO2	3	In order to be able to compare the input and output characteristics of different electronic components, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required							
CO3-PO2 3		In order to be able to analyze basic electronic circuits considering existing system models to explore practical complex engineering problems, identification, formulation, research literature and analysis of complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences are required							
CO4-PO3	2	In order to be able to design various electronic circuits using both passive and active components to solve the real life engineering problems, , it is required to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations							

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1

Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics				
Week-1	Week-1 Transformer: Principles, types, Auto Transformer				
Week-2	Transformer: Performances and characteristics.				
Week-3	Week-3 DC generators: Principles, types				
Week-4	DC generators: Performances and characteristics.				
Week-5	DC Motors: Principles, types: Magnet Brushless dc (BLDC) Motor Drives	Class Test 2,			
Week-6	DC Motors: Performances and characteristics				
Week-7	DC Motors: Speed control and starters of motors.				
Week-8	AC Machines: Principles of three phase induction motor and equivalent circuits	26.1			
Week-9	AC Machines: Introduction to synchronous machines and fractional horse power motors.	Mid Term			
Week-10	AC Machines: Introduction to synchronous machines and fractional horse power motors Part II	Final			
Week-11	Electronics: Characteristics of semiconductor diodes	Class			
Week-12	Electronics: Diode Applications, Diode Rectifier				
Week-13	Characteristics of BJT and Introduction to FET, SCR, IGBT				
Week-14	DC Biasing of BJT	_ Final			

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2	C2, C4
Assessmen t (40%)	Class Participation and Class attendance	5+5= 10%	CO3, CO4	C4, C6
	Mid term	10%	CO3	C4
	Final Examination	60%	CO1-CO4	C2, C4, C6
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. R.L. Boylestad, *Introductory Circuit Analysis*, 13th Edition, Pearson, 2015
- 2. James. W. Nilson, *Introductory Circuits for Electrical & Computer Engineering*, Prentice Hall of India Private Ltd.
- 3. Fitzgerald, Basic Electrical Engineering, McGraw-Hill International.
- 4. Mary Atwater, Electricity and Magnetism, Macmillan/McGraw-Hill School Publishing Company, 1993
- 5. Robert P. Ward, Introduction to Electrical Engineering, Prentice Hall of India Private Ltd.
- 6. Richard C. Dorf & James A. Svoboda, Introduction to Electric Circuits, John Wiley & Sons Inc.
- 7. B.L. Thereja, *Electrical Technology*, S. Chand Publishing
- 8. Stephen J. Chapman, Electric Machinery Fundamentals, McGraw-Hill International.

REFERENCE SITE

Level-2 Term-II

	COURSE INFORMATION						
Course Code	: EECE 222		Lecture Conta	ct Hours	: 3.0	00	
Course Title	: Electrical and Electronic Technolog	y Sessional	Credit Hours		: 1.:	50	
	PRE-REQUISITE						
	EECE 221						
	CURRICULUM STRUCTURE						
	Outcome Based Education (OBE)						
	SYNOPSIS/RATIONALE						
	To learn and familiarize the basics of electrical machines as well as the analysis of electronic circuit.						
	OBJECTIVES						
	 To learn the basic of electrical machines, their applications and unit. To study the different electronic circuits and apply those in solving complex engineering problem. 						
	LEARNING OUTCOMES						
	 Upon completion of the course, the students will be able to Practically analyze and evaluate performance characteristics of different electrical machines Construct different fundamental electronic circuits and relate the theoretical knowledges to justify the performance of different electronic devices Apply the acquired knowledge to design and construct a real-life based project in group 						
	COURSE OUTCOMES & GENER		_				
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	CP CA	KP	Assessment Methods	
CO1	Practically analyze and evaluate performance characteristics of different electrical machines	PO2, PO5	C4, C5	1 -	1- 3,6	R,Q,MT,T	

CO2	Construct different fundamental electronic circuits and relate the theoretical knowledges to justify the performance of different electronic devices	PO2, PO5	C3	1	-	1- 3,6	R,Q,T
CO3	Apply the acquired knowledge to design and construct a real-life based project in group	PO3, PO5, PO9, PO 10	C3, C6	1	1	1- 6	PR, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

COURSE CONTENT

- 1. Study the characteristic of single and three phase transformer.
- 2. Study the characteristic of DC generators.
- 3. Study the characteristic of DC motors.
- 4. Study the characteristic of three phase induction motor.
- 5. Study the characteristic of synchronous generator.
- 6. Lab Test-01
- 7. Study the characteristic of diode in DC.
- 8. Study the characteristic of diode in AC with the introduction to oscilloscope.
- 9. Study the characteristic of common base BJT.
- 10. Study the characteristic of common emitter BJT.

SKILL MAPPING (CO-PO MAPPING)

No	No Course Learning Outcome PROGRA				GRAM OUTCOMES (PO)								
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Practically analyze and evaluate performance characteristics of different electrical machines		3			3							
CO2	Construct different fundamental electronic circuits and relate the theoretical knowledges to justify the performance of different electronic devices		3			3							
CO3	Apply the acquired knowledge to design and construct a real-life based project in group			2		2				2	2		

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO2	3	The knowledge of mathematics, science and electrical engineering sciences has to be applied to find out the signal to noise ratio and channel capacity of a communication system.
CO1-PO5	3	To study the performance characteristics of the designed system through simulation, knowledge of modern engineering tools used in the practice areas is needed.

CO2-PO2	3	In order to construct different fundamental electronic circuits and relate the theoretical knowledges to justify the performance of different electronic devices, the knowledge of mathematics and engineering science must be applied.				
CO2-PO5	3	To study the performance characteristics of the designed system through simulation, knowledge of modern engineering tools used in the practice areas is needed.				
CO3-PO3	2	In order design electronic system with defined design parameters, knowledge is needed that supports engineering design in a practice area				
CO3-PO5	To study the performance characteristics of the designed system					
CO3-PO9	2	In order to apply the acquired knowledge to design and construct a real-life based project in group effort must be taken in individual or in group				
CO3-PO10	2	In order to apply the acquired knowledge to design and construct a real-life based project in group and to present it communication skill is needed				

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING	LEARNING	STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	28
Student-Centered Learning	-
Self-Directed Learning	
Preparation of Lab Reports	28
Preparation of Lab Test	21
Preparation of presentation	1.4
Preparation of Quiz	14
Engagement in Group Projects	
Formal Assessment	
Continuous Assessment	14
Final Quiz	1
Total	120

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Study the characteristic of single and three phase transformers.	
Week-2	Study the characteristic of DC generators.	
Week-3	Study the characteristic of DC motors.	
Week-4	Study the characteristic of three phase induction motor.	
Week-5	Study the characteristic of synchronous generator.	
Week-6	Lab Test-01	
Week-7	Study the characteristic of diode in DC.	

Week-8	Study the characteristic of diode rectifier in AC with the introduction to oscilloscope.	
Week-9	Study the characteristic of common base BJT.	
Week-10	Study the characteristic of common emitter BJT	
Week-11	Quiz	
Week-12	Practice Lab-02	
Week-13	Lab Test-02	
Week-14	Viva Voce	

ASSESSMENT STRATEGY

Components		Grading	CO	Blooms Taxonomy
	Conduct of Lab Tests/Class	25%	CO1, CO2	C3, C4, C5
Continuous	Performance	23%	CO1, CO2	A3, A5, P2, P4
Assessment	Report Writing/ Programming	15%	CO1, CO2	C3, C4, C5
		1370	601, 602	A3, A5, P2, P4
(40%)	Mid-Term Evaluation	20%	CO1	C4, C5
	(exam/project/assignment)		COI	A3, A5
	Viva Voce	10%	CO1, CO2, CO3	C3, C4, C5, C6
	viva voce	1070	CO1, CO2, CO3	A3, A5, A6, P2, P4
	Final Evaluation (Lab Quiz)	30%	CO1, CO2, CO3	C3, C4, C5, C6
	Final Evaluation (Lab Quiz)	30%	CO1, CO2, CO3	A3, A5, A6, P2, P4
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Chapman, Stephen J. Electric machinery and power system fundamentals. USA: McGraw-Hill,2002.
- 2. Theraja, B. L., and A. K. Theraja. "A Text Book of Electrical Technology, AC & DC Machines in SI." Systems of Unit, S. Chand & Company Ltd, Ram Nagar, New Delhi, India, 2002.
- 3. Stephan J. Chapman , Electrical Machinery Fundamental , USA: McGraw-Hill, 2004.
- 4. Sedra, Adel S., et al. Microelectronic circuits. New York, USA: Oxford University Press, 1998.

REFERENCE SITE

6.1. c. Department of CSE

Level 1 Term II

	COURSE INFORMATION		
Course Code Course Title	: CSE 121 : Introduction to Computer Science and Programming Language	Lecture Contact Hours Credit Hours	: 3.00 : 3.00
	PRE-REQUISITE		
	None		
	CURRICULUM STRUCTURE		

	Outcome Based Education (OBE)								
	SYNOPSIS/RATIONALE	SYNOPSIS/RATIONALE							
	To develop strong programming fundamentals for learners who want to solve complex problems of real world by writing computer programs.								
	OBJECTIVES								
	 To provide a basic idea of the programming concepts To know the basic rules for implementing C programming. To develop problem-solving skills to solve different problems and calculations using C programming. 								
	LEARNING OUTCOMES								
	 Upon completion of the course, the students will be able to Explain the features of procedural language. Apply C programming concepts such as control flow, conditional statements, composition of structures, array, function etc. to solve real world problem. Design algorithms in a systematic way to solve any problem which can be implemented using C. Develop the communication skill by presenting topics on programming phenomena. 								
	COURSE OUTCOMES & GENE	ERIC SKILLS							
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods		
CO1	Explain the features of procedural language.	PO1	C1-C3	1	-	1	T, MT, F		
CO2	Apply C programming concepts such as control flow, conditional statements, composition of structures, array, function etc. to solve real world problem.	PO2	C4	3		2	T, MT, F		
CO3	Design algorithms in a systematic way to solve any problem which can be implemented using C.	PO3	C6	1,3		5	T, MT, F		
CO4	Develop the communication skill by presenting topics on programming phenomena.	P10	A2		1	5	Pr, Q		
	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)								
	COURSE CONTENT								
	Programming concepts; Program development stages; Flow charts; Structured programming language: data types, operators, bitwise operations, expressions, control structures: if-else, switch-case, loop (for loop, while loop, do-while loop). Input and Output: standard input and output, formatted input and output. Functions and program structure: function basics, parameter passing conventions, scope rules storage classes, recursion, header files, the preprocessor, Pointer, and its uses, Arrays, Strings Multidimensional array;								

User-defined data types: structures, unions, and enumerations. File, Variable length argument list, Command line parameters, Error Handling, Linking, Library Functions
SKILL MAPPING (CO-PO MAPPING)

N.	No.			I	PRO	GRAI	JO N	JTC	OMI	ES (P	O)		
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Explain the features of procedural language.	3											
CO2	Apply C programming concepts such as control flow, conditional statements, composition of structures, array, function etc. to solve real world problem.		3										
CO3	Design algorithms in a systematic way to solve any problem which can be implemented using C.			3									
CO4	Develop the communication skill by presenting topics on programming phenomena.										2		

(3 – High, 2- Medium, 1-low)

HISTIFIC	ATION FOR	CODO	MA DDING
.110511610.4	A I ION BOR	(J-PU)	WIAPPING

Mapping	Corresponding Level of Matching	Justification					
CO1-PO1	3	Achieving depth of knowledge on programming by solving complex engineering problem and understanding of the features of a programming languages.					
CO2-PO2	3	Applying different concepts of C/MATLAB programming to find the solution of complex problems.					
CO3-PO3	3	Designing algorithm, identifying the problem statement and formulating the problem to solve it.					
CO4-PO10	2	Developing Communication skill on programming through quiz and presentation.					

TEACHING LEARNING STRATEGY

Teaching an	d Learning Activities	Engagement (hours)
	Face-to-Face Learning	
	Lecture	42
	Practical / Tutorial / Studio	-
	Student-Centered Learning	-

Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Introduction to Computer Programming.	Class
	2. Environment Setup and introduction with the IDE.	Test 1,
	3. Standard input and output.	Final
	4. Formatted input and output.	Exam
Week-2	1. Introduction to data types, mathematical problems using data types, data type	LAGIII
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	conversion, operators, bitwise operation, and expressions.	
	2. Program development stages-flow chart.	
Week-3	1. Introduction to the conditional statement (if-else, nested if-else, switch case).	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2. Problem-solving with conditional statements.	
Week-4	1. Introduction to the loop statement (for loop, while loop, do-while loop).	
VV COR 1	2. Problem-solving with loop statements.	Class
Week-5	1. Functions and program structure: Function Basics, Parameter passing	Test 2,
Week 5	conventions, Scope Rules, Storage classes, Recursion.	Final
	2. Problem-solving with implementing Function.	Exam
Week-6	1. Recursion	
VV CCR O	2. Problem-solving with recursions.	
Week-7	1. String	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2. Problem solving with string.	
Week-8	1. Header files	
,, con o	2. Preprocessor	Mid
	3. Pointer and its uses.	Term
	4. Problem-solving with pointers.	Term
Week-9	1. Arrays	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2. Multidimensional array	
	3. Problem-solving with arrays.	
Week-10	1. Structures	
.,, 2011 10	2. Problem-Solving with structures.	
Week-11	1. Unions	
.,,	2. Enumerations	Class
Week-12	1. Opening, reading, writing, and closing a file.	Test 3,
	2. Problem-solving with implementing files.	

Week-13	 Variable length argument list Command Line parameters 	Final Exam
	3. Linking	
	4. Library Functions	
Week-14	1. Error handling	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2. Problem-solving with error handling	

ASSESSMENT STRATEGY

1	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO2, CO3	C1,C2,C3,C4,C6
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO1	C2
, ,	Mid term	10%	CO2, CO3	C2, C6
Fir	nal Examination	60%	CO1-CO3	C2, C3, C6
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Herbert Schildt, *Teach Yourself C*, 3rd Edition
- 2. Programming with C Schaums Outline Series
- 3. Holly Moore, MATLAB for Engineers, Pearson Education Inc, 2018
- 4. Peter Norton, Computer Fundamentals, 6th Edition McGraw-Hill Education, 2004
- 5. Herbert Schildt, C, The Complete Reference, 4th Edition
- 6. Dennis M. Ritchie, C Programming Language, 2nd Edition
- 7. David Houcque, Introduction to Matlab for Engineering Students, version-1.2

REFERENCE SITE

Level-1 Term-II

	COURSE INFORMATIO	N						
Course Code Course Title	: CSE 122 : Introduction to Computer Programming Language Sea		Lecture Cont Credit Hours		1.50 0.75			
	PRE-REQUISITE							
	None							
	CURRICULUM STRUCT	URE						
	Outcome Based Education ((OBE)						
	SYNOPSIS/RATIONALE							
	The C Programming Session principles, mechanism of program design and develop programming language and language. OBJECTIVES	ogramming skills oment. The lab be	and develop begins with pract	asic pr	ogramı ntrodu	ming sleatory co	cills to oncepts of C	
	 5. To provide a basic idea of 6. To know the basic rules of 7. To develop problem-solving programming. LEARNING OUTCOMES Upon completion of the cout 8. Apply knowledge of alg 9. Apply knowledge of Cout 	for implementing Cong skills to solve discourse, the students variety or the find road of the control of the co	E programming. ifferent problem will be able to admap to solve	proble		ons usin	g C	
	COURSE OUTCOMES & GENERIC SKILLS							
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods	
CO1	Apply knowledge of algorithm to find roadmap to solve problems.	PO1	C3, A2	1	1	4	ASG, Q, OE, T	

CO2	Analyze the fundamental principles, typical characteristics, and mechanisms of a structured programming language practically to implement and solve problems.	PO2	C3, A2	1	1	4	ASG, Q, OE, T
CO3	Apply practical knowledge to develop basic programming skills with respect to program design and development.	PO6	C6	1,3	3	7	ASG, Pr,R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T - Test; PR - Project; Q - Quiz; ASG -Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam, OE-Online Exam)

COURSE CONTENT Programming concepts; Program development stages; Flow charts; Structured programming language: data types, operators, bitwise operations, expressions, control structures: if-else, switch-case, loop (for loop, while loop, do-while loop). Input and Output: standard input and output, formatted input and output. Functions and program structure: function basics, parameter passing conventions, scope rules, storage classes, recursion, header files, the preprocessor, Pointer, and its uses, Arrays, Strings, Multidimensional array;

User-defined data types: structures, unions, and enumerations. File, Error Handling, Linking, Library Functions

SKILL MAPPING (CO-PO MAPPING)

No	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Apply knowledge of algorithm to find roadmap to solve problems.	3											
CO2	Apply knowledge of C concepts to implement solver program.		3										
CO3	Apply practical knowledge to develop basic programming skills with respect to program design and development.						3						

(3 – High, 2- Medium, 1-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Corresponding Level of Matching	Justification
CO1-PO1	3	In order to find out the roadmap of a complex engineering problem using c programming, knowledge of algorithm is crucial.
CO2-PO2	3	In order to identify and formulate the problem for solver program concepts of C should be applied properly.

CO3-PO6	3	Apply reasoning informed by contextual knowledge to ass health, safety, legal and cultural issues and the consequent relevant to professional engineering practice and solutions engineering problems.	responsibilities
TEACHING LE	ARNING STRATEGY		
Teaching and Lea	arning Activities		Engagement (hours)
	Face-to-Face Learning		
	Lecture		21
	Practical / Tut		-
	Student-Cente		-
	Self-Directed Learning		
	Non-face-to-fa	ace learning	42
	Revision		21
	Formal Assessment		
	Continuous As	ssessment	2
	Mid-Term Final Examina	ation	$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$
	Final Examina	ation	3
	Total		90
TEACHING MI			
TEACHING WI	ETHODOLOGI		
Lecture and Disci	ussion, Co-operative and	Collaborative Method, Problem Based Method	
COURSE SCHE	DULE		
Weeks		Topics	Remarks
Week-1	Basic Programming, II	DE, Data Type, Operations	
Week-2	If-else, switch case		Evaluation 1
Week-3	Loop, Nested Loop		
Week-4	Array (1D, 2D)		Evaluation 2
Week-5	String, Function		
Week-6	Structure, File Handlin	ng	Evaluation 3
Week-7	Assignment: String, Str	rucutre	Online Exam
ASSESSMENT	STRATEGY		

	Components		CO	Blooms Taxonomy
Continuous	Lab performance and Report	10%		
Assessment	Online-1	50%	CO1, CO2	C3, A2
(40%)	Class Evaluation	20%	CO2	C3, A2
	Lab Quiz	20%	CO1, CO2	C3, A2
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 8. Herbert Schildt, *Teach Yourself C*, 3rd Edition
- 9. Programming with C Schaums Outline Series
- 10. Peter Norton, Computer Fundamentals, 6th Edition McGraw-Hill Education, 2004
- 11. Herbert Schildt, C, The Complete Reference, 4th Edition
- 12. Dennis M. Ritchie, C Programming Language, 2nd Edition
- 13. E Balagurusamy, Programming in Ansi C, 6th Edition.

REFERENCE SITE

6.1. d. Department of ME

Level 1 Term I

	COURSE INFORMATION					
Course Code	: ME 180	Le	ecture Contact Ho	ours	: 3.0	00
Course Title	: Basic Engineering Drawing	Cr	edit Hours		: 1.5	50
	PRE-REQUISITE					
	None					
	CURRICULUM STRUCTURE					
	Outcome Based Education (OBE)					
	SYNOPSIS/RATIONALE					
	This course is designed for learn accurately and clearly communic to communicate with others through of real world.	ating ideas, in	nformation an	d instructi	ons ar	nd use them
	OBJECTIVES					
	 To enable students to acquire accurately and clearly communities. To enable students to acquire for advanced study of engineer LEARNING OUTCOMES	nicating ideas requisite knov	s, information wledge, techn	and instru	ctions	
	 Upon completion of the course the st Understand engineering draw and techniques. Apply and analyze standard control 	ings in using o	engineering d			s, materials
	COURSE OUTCOMES & GENERIC	SKILLS				
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	CP CA	KP	Assessment Methods
CO1	Understand engineering drawings in using engineering drawing apparatus, materials and techniques.	PO1	C2	1 2	1	R, Q, T
CO2	Apply and analyze standard conventions used in engineering drawing.	PO2, PO4	C3, C4	3 3	4, 5	R, MT, T

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Introduction; Instruments and their uses; First and third angle projections; Orthographic drawings; Isometric views; Missing lines and views; Sectional views and conventional practices; Auxiliary views.

SKILL MAPPING (CO-PO MAPPING)

No	No. Course Learning Outcome		PROGRAM OUTCOMES (PO)										
INO.			2	3	4	5	6	7	8	9	10	11	12
CO1	Understand engineering drawings in using engineering drawing apparatus, materials and techniques.	3											
CO2	Apply and analyze standard conventions used in engineering drawing.		3		3								

^{(3 –} High, 2- Medium, 1-low)

TEACHING LEARNING STRATEGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	28
Student-Centered Learning	-
Self-Directed Learning	
Preparation of Lab Reports	28
Preparation of Lab Test	21
Preparation of presentation	1.4
Preparation of Quiz	14
Engagement in Group Projects	
Formal Assessment	
Continuous Assessment	14
Final Quiz	1
Total	120

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Introduction	Mid-term

Week-2	First and third angle projections	
Week-3	Orthographic drawings	
Week-4	Orthographic drawings	
Week-5	Isometric views	
Week-6	Isometric views	
Week-7	Mid-term Exam	
Week-8	Sectional views and conventional practices	
Week-9	Solid Works Practice – Orthographic Drawing	
Week-10	Solid Works Practice – Orthographic Drawing	
Week-11	Solid Works Practice – Orthographic Drawing	Final Exam
Week-12	Actual drawing reading practice – Power plant layout, Cooling tower sectional view, Steam generator sectional view	
Week-13	Actual drawing reading practice – Pump cut sectional view, Welding joints ISO symbol, Fluid power and control ANSI symbol	
Week-14	Final Exam	

ASSESSMENT STRATEGY

Comp	ponents	Grading	СО	Blooms Taxonomy
	Class Participation	5%	CO1	C2
Continuous Assessment	Conduct of Lab Test	20%	CO2	C2-C4
(60%)	Report Writing	15%	CO1, CO2	C2-C4
	Mid term	20%	CO2	C2-C4
Final	Exam	30%	CO1	C4
Evaluation (40%)	10%		CO2	СЗ
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Paul Wallah, Metric Drafting, Publisher Glenceo Publishing Co, Inc; 1994.
- 2. William P. Spence, *Drafting Technology and Practice*, Publisher Chas A. Bennett Co, Inc, 1989.
- 3. Giesecke, Frederick Ernest, et al. Technical drawing. Macmillan, 1998.

REFERENCE SITE

Level 2 Term II

	COURSE INFORMATION							
Course Code	: ME 253	Lec	: 3.0	00				
Course Title	: Engineering Mechanics	Cre	edit Hours		00			
	PRE-REQUISITE							
	None							
	CURRICULUM STRUCTURE							
	Outcome Based Education (OBE)							
	SYNOPSIS/RATIONALE							
	This course provides an introduction to the essential theoretical basis of Engineering Mechanics and its application to a range of problems of relevance to practical engineering.							
	OBJECTIVES							
	 To impart the essential theoreti To explain the Laws of Mecha structures. To understand the courses deal design of mechanical systems. 	nics to predict	forces in and	l motions o				
	LEARNING OUTCOMES							
	Upon completion of the course the stu	idents will be ab	ole to					
	 Define the components of a force in rectangular or non-rectangular coordinates. Demonstrate complete and correct free-body diagrams and write the appropriate equilibrium equations from the free-body diagram. Analyze systems that include frictional forces. Evaluate the second moment of an area and calculate the principal second moments of an area. 							
	COURSE OUTCOMES & GENERIC SKILLS							
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	CP CA	KP	Assessment Methods		
CO1	Explain basic kinematics concepts – displacement, velocity and acceleration (and their angular counterparts).	PO1, PO2	C2	-	1	T, Q, F		

CO2	concept Impulse	strate use of basic dynamics as- Work-Energy principle, e-Momentum principle to ynamics problems	PO1, PC				C3			-	2	I	ASG,	F
CO3	Apply scalar and vector analytical techniques for analysing forces in statically determinate structures		PO1, PO2, PO3, PO4				C4			-	4		MT, I	- Tr
CO4		e equilibrium of particles and real world problems.	PO2, PC			C:	5, C6		1	1	5		T, F	
		mplex Problems, CA-Complex Act SG – Assignment; Pr – Presentation											; Q –	
	COURS	SE CONTENT												
	Frames, a Planar m accelerat Kinetics momentu	and three-dimensional problem and cables; Friction; Moments of echanisms, linkages, mobility; it ion polygons; Euler's first law; of particles: Newton 's second am; System of particles; Kinema of plane motion of rigid bodies:	f inertiant of angular of law of attics of	entrone more	es of men otion	f rota tum ; Pri dies;	l mass	es; R Kenn aler's s of	elati edy' s sec wor	ive means the cond of the cond	notion corem law. nergy	n. n; Ve	locity	and and
	SKILL	MAPPING(CO-PO MAPPING)												
		. ,				- D O C		0117	001	TEG.	(DO)			
	No.	Course Learning Outcome	$\frac{1}{1}$	2	3	4	3RAM 5 6	7	8 8	1ES (10	11	12	
	CO1	Define the components of a force rectangular or non-rectangular coordinates.	in	3		·	3 0				10	11	12	
	CO2	Demonstrate complete and corr free-body diagrams and write appropriate equilibrium equation from the free-body diagram.	the 3	3		2								
	CO3 Analyze systems that include frictional forces.		ide 2	3	1	2								
CO4 Evaluate the second moment of an area and calculate the principal second moments of an area.			2	2	3									
TEACHING		h, 2- Medium, 1-low)												

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	84
Revision	21
Formal Assessment	
Continuous Assessment	2
Mid-Term	1
Final Examination	3
Total	153

TEACHING METHODOLOGY

Lecture and Discussion,

Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Basic concepts of mechanics	Class
Week-2	Statics of particles and rigid bodies	Test 1, Final
Week-3	Centroids of lines, areas and volumes	Exam
Week-4	Forces in truss, frames, and cables	
Week-5	Forces in truss, frames, and cables	Class Test 2,
Week-6	Friction; Moments of inertia of areas and masses; Relative motion	Final Exam
Week-7	Friction; Moments of inertia of areas and masses; Relative motion	
Week-8	Kinetics of particles: Newton's second law of motion	Mid
Week-9	Principles of work, energy, impulse and momentum	Term , Final
Week-10	System of particles	Exam
Week-11	Kinematics of rigid bodies; Kinetics of plane motion of rigid bodies: forces and acceleration	
Week-12	Kinematics of rigid bodies; Kinetics of plane motion of rigid bodies: forces and acceleration	Class Test 3,
Week-13	Principles of work and energy, Basic concepts of Lagrangian and Hamiltonian mechanics	Final Exam
Week-14	Principles of work and energy, Basic concepts of Lagrangian and Hamiltonian mechanics	

ASSESSMENT STRATEGY

	Components	Grading	CO	Blooms Taxonomy
Continuous	Class Test/ Assignment (1-3)	20%	CO1, CO4	C3, C5, C6
Assessment (40%)	Class Participation and Class attendance	5+5= 10%	CO2	C1-C3
	Mid term	10%	CO3	C4
	Final Examination	60%	CO1-CO4	C1-C6
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Ferdinand P. Beer, E Russell Jr, *Vector Mechanics for Engineers: Statics. Johnston*, Publisher McGraw-Hill Companies, 5th edition 1988.
- 2. Joseph FShelley, Engineering Mechanics, Statics and Dynamics, USA:McGraw-Hill, 1980.
- 3. Hibbeler, Russell Charles, and Russell C. Hibbeler. *Engineering mechanics: statics & dynamics*. Pearson Education India, 2007.

REFERENCE SITE

Level 2 Term II

	COURSE INFORMATION		
Course Code	: ME 254	Lecture Contact Hours	: 1.50
Course Title	: Engineering Mechanics Sessional	Credit Hours	: 0.75
	PRE-REQUISITE		
	ME 253		
	CURRICULUM STRUCTURE		
	Outcome Based Education (OBE)		
	SYNOPSIS/RATIONALE		
	To learn and familiarize with the basics and o with complex problems of practical life.	operation of engineering mec	hanics associate
	OBJECTIVES		
	To verify practically the theories and conce	pts learned in ME 253.	
	LEARNING OUTCOME		
	Upon completion of the course the students will	be able to	
	1. Demonstrate the free-body diagrams and from the free-body diagram.		_
	2. Analyze the engineering systems and ca the principal second moments of an area		area as well as

	COLIDS	SE OUTCOMES & GENERIC	CVIII	C										
No.		ourse Learning Outcome	Corre				Bloo Caxor	m's nomy	CF	,	CA	KP		essmen ethods
CO1	and wri	strate the free-body diagrams the the appropriate equilibrium as from the free-body diagram.	PO1				C	2	1		2	1	R	R, Q, T
CO2	calculat	e the engineering systems and e second moment of an area as the principal second moments ea			O2, PO4 C5		C5, C6		3		3	4, 5	R,	, MT, T
		mplex Problems, CA-Complex ASG – Assignment; Pr – Presenta												; Q –
	COURS	SE CONTENT												
	3. 4. Along using t	Study of impulse moment Study of rigid body kinem Study of planar motion of with the experiments the state he principles learned in MI	natics rigid l tudents E 253.	bod s w	У	esig	n sir	nple	syste	ems	in t	he re	st 3 (classes
	SKILL	MAPPING (CO-PO MAPPIN	G)											
	No.	Course Learning Outcom	me	1	2	2 PF	ROG 4	RAM 5 6	OUT 7	CON 8	MES ((PO)	11	12
	CO1		-body priate	3	2	3	4	3 0	/	0	9	10		12
	CO2 Analyze the engineering systems and calculate second moment of an area as well as the principal second moments of an area						3							
	(3 – High, 2- Medium, 1-low)													

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	21
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision	11

Formal Assessment	
Continuous Assessment	-
Mid-Term	1
Final Examination	3
Total	78

TEACHING METHODOLOGY

Lecture and Discussion,

Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week-1	Introduction	
Week-2	Study of statics of particles and rigid bodies	
Week-3	Study of forces in truss, frames, and cables	
Week-4	Study of moments of inertia of areas and masses	
Week-5	Study of kinetics of particles	
Week-6	Study of kinematics of rigid bodies	
Week-7	Final Exam	

ASSESSMENT STRATEGY

	Components		СО	Blooms Taxonomy
	Class Participation	5%	CO1	C2
Continuous Assessment	Conduct of Lab Test	20%	CO2	C2-C4
(60%)	Report Writing	15%	CO1, CO2	C2-C4
	Mid term	20%	CO2	C2-C4
Final	Exam	30%	CO1	C4
Evaluation (40%)	Viva Voce/ Presentation	10%	CO2	C3
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. William Nash, Strength of Materials, 4th edition, USA: Mcgraw-hill International Editions, 2002
- 2. A C Mandal & M. Quamrul Islam , *Mechanics of Material with Solved Problems*, published by IUT, OIC, 2011.
- 3. Andrew Pytel, Ferdinand L. Singer. *Strength of Materials*, 4th edition, USA: Mcgraw-hill International Editions, 1990.

REFERENCE SITE			
	_	_	

6.1. e. Department of Industrial and Production Engineering

Level 2 Term I

	COURSE INFORMATION										
Course Code	: GELM 275	Lec	cture Contact H	lours	: 2.0	00					
Course Title	: Leadership and Management	Cre	Credit Hours		: 2.0	00					
	PRE-REQUISITE										
	None	None									
	CURRICULUM STRUCTURE										
	Outcome Based Education (OBE)	Outcome Based Education (OBE)									
	SYNOPSIS/RATIONALE										
	The course is designed to make students understand the overlapping connection between engineering and management in an organization through the study of varied management practices and leadership traits as an engineer.										
	OBJECTIVES										
	 To introduce different manageme To expose students to different v To understand how an organizati To understand various personalit To solve real-world management 	iews and styles on functions col y traits and its in	of leadership. llaboratively w mpact on leade			_					
	LEARNING OUTCOMES										
	 Upon completion of the course, the students will be able to Familiarize with the fundamental concepts of leadership and management skills. Understand the role and contribution of a leader in achieving organizational goals. Understand the contribution of leadership traits and management skills in decision making and solving real life problems. 										
	COURSE OUTCOMES & GENER	Corresponding	Bloom's			Assessment					
No.	Course Learning Outcome	POs	Taxonomy	CP CA	KP	Methods					

CO1	Familiarize with the fundamental concepts of leadership and management skills	PO-9,10	C1-C2			1	T, R, F
CO2	Understand the role and contribution of a leader in achieving organizational goals	PO-9,10,11	C1-C2			1	T, ASG, R, F
CO3	Understand the contribution of leadership traits and management skills in decision making and solving real life problems	PO- 1,8,9,10,11,12	C1-C2			1	T, ASG, R, F
	(CP- Complex Problems, CA-Complex	Activities, KP-Kno	owledge Profil	e. T – '	Test : F	PR – P	roiect : O –

Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Management and Cultures: Definition of culture, culture theories, and their significance in organizational settings; Cultural values, beliefs, and norms shaping managerial practices; The impact of cultural diversity on global business; The relationship between organizational culture and cultural diversity; Addressing cultural biases and promoting diversity and inclusion initiatives; Fostering organization cultures and their principles among management, leaders and staffs.

Leadership: Leadership styles, leadership theories, traits of a good leader, conflicts negotiation, engineer as a leader, manpower control, motivation and theories, group dynamics, and participative management,

Planning and Control: Management functions, types and roles and responsibilities, management skills, management approaches.

Organization, Planning and Development: Organizational planning, organizational development models, theory and structure, span of control, authority delegation.

Personnel Planning and HR Management System: Process of Human Resource Planning, performance management and appraisal.

Operation management: Production planning and control (PPC) functions.

Marketing Management: Marketing concepts & organization, strategy, industrial and consumer selling, sales promotion, channel & advertising decisions, new product strategy, patent laws.

Information Technology and Management: Management information system (MIS), technology life cycle, technology management, management of innovation and changes, enterprise resource planning (ERP). Case Studies: Solving real-world management problems.

SKILL MAPPING (CO-PO MAPPING)

NI-	Committee Outcome	PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Familiarize students with the fundamental concepts of human resource management, management, and financial management.									3	3		
CO2	Understand the role of an engineer as a leader in the business environment.									3	3	2	
CO3	Analyzereal-lifecomplexmanagerialdecision-makingproblemsandsolvethoseusingengineeringknowledgeandmanagementskills		2						2	3	3	2	2

^{(3 –} High, 2- Medium, 1-low)

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	56
Revision	14
Formal Assessment	
Continuous Assessment	1
Mid-Term	1
Final Examination	3
Total	103

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
Week 1	Definition of culture, culture theories, and their significance in organizational settings; Cultural values, beliefs, and norms shaping managerial practices; The impact of cultural diversity on global business	Class Test, Final Exam
Week 2	The relationship between organizational culture and cultural diversity; Addressing cultural biases and promoting diversity and inclusion initiatives; Fostering organization cultures and their principles among management, leaders and staffs.	

Week 3	Leadership styles, leadership theories, traits of a good leader, conflicts negotiation, engineer as a leader	
Week 4	Manpower control, motivation and theories, group dynamics, and participative management	
Week 5	Management functions, types and roles and responsibilities, management skills, management approaches.	
Week 6	Organizational planning, organizational development models, theory and structure, span of control, authority delegation	Class Test, Final Exam
Week 7	Process of Human Resource Planning, performance management and appraisal.	
Week 8	Production planning and control (PPC) functions	
Week 9	Marketing concepts & organization, strategy, industrial and consumer selling, sales promotion	
Week 10	Channel & advertising decisions, new product strategy, patent laws.	Mid Term
Week 11	Management information system (MIS), technology life cycle, technology management	
Week 12		
Week 13	Case Studies: Solving real-world management problems.	Final Exam
Week 14	Revision class	

ASSESSMENT STRATEGY

	Assessment strategies	CO	Dia ana's Tananama	
	Components	Grading	CO	Bloom's Taxonomy
	Class test 1-2	20%	CO 1	C1-C2, P1
	Class test 1-2	20%	CO 2	C1-C2
Continuous	Class Participation and Class	5 5 - 100/	CO 1	C1-C2, P1, A1
Assessment	attendance	5+5= 10%	CO 2	C1-2, P1-P2, A1
(40%)	Mid Term	10%	CO 1	C1-C2, P1, A1
			CO 2	C1-C2, P1-P2, A1-A2
			CO 3	C1-C2, P1-P2, A1-A2
			CO 1	C1-C2, P1, A1
	Final Exam		CO 2	C1-C2, P1-P2, A1-A2
			CO 3	C1-C2, P1-P2, A1-A2
	Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Gupta, A. K. Engineering Management. India, S. Chand Publishing, 2014.
- 2. Telsang, Martand. Industrial Engineering and Production Management: For Undergraduate, Postgraduate Courses and Diploma Programmes in Mechanical, Production and Industrial Engineering Students. A Useful Guide for HE, Management Courses, Professional Engineers and Competitive Examinations for GATE and UPSC and Engineering Services Examinations. S. Chand, 2006.
- 3. Yukl, Gary. Leadership in Organizations, 9/e. Pearson Education India, 1981.
- 4. Whetten, David Allred, Kim S. Cameron, and Mike Woods. *Developing management skills*. Upper Saddle River, NJ: Prentice Hall, 2007.

REFERENCE SITE

APPENDIX A

EQUIVALENCE TABLE

		Old Courses (2020-202)	3)	New Courses (2023-2025)					
Ser	Course Code	Course Name	Cr Hr	Ct Hr	Course Code	Course Name	Cr Hr	Ct Hr	
1.	ENG 102	Communicative English - I	1.50	3.00	LANG 102	Communicative English-I	1.50	3.00	
2.	RUS 172	Introduction to Russian Language - I	0.75	1.50	LANG 172	Introduction to Russian Language - I	0.75	1.50	
3.	RUS 174	Introduction to Russian Language -	0.75	1.50	LANG 174	Introduction to Russian Language - II	0.75	1.50	
4.	Gen 377	Engineering Ethics and Morale Philosophy	2.00	2.00	GEEM 351	Engineering Ethics and Moral Philosophy	2.00	2.00	
5.	Phy 101	Physics - I	3.00	3.00	PHY 137	Waves and Oscillations, Structure of Matter and Quantum Mechanics	3.0	3.0	
6.	Phy 102	Physics- I Sessional	1.50	3.00	PHY 138	Physics Sessional	1.5	3.0	
7.	Chem 101	Chemistry - I	3.00	3.00	CHEM 101	Fundamentals of Chemistry	3.0	3.0	
8.	Chem 102	Chemistry Sessional - I	1.50	3.00	CHEM 102	Fundamentals of Chemistry Sessional	1.5	3.0	
9.	Math 101	Differential and Integral Calculus	3.00	3.00	MATH 101	Differential and Integral Calculus	3.0	3.0	
10.	Math 103	Differential Equations and Matrix	3.00	3.00	MATH 103	Differential Equations and Matrix	3.0	3.0	
11.	Math 201	Vector Analysis, Laplace Transform and Coordinate Geometry	3.00	3.00	MATH 201	Vector Analysis, Laplace Transform and Coordinate Geometry	3.0	3.0	
12.	EECE 119	Fundamentals of Electrical Engineering	3.00	3.00	EECE 119	Fundamentals of Electrical Circuit Analysis	3.0	3.0	
13.	EECE 120	Fundamentals of Electrical Engineering Sessional	0.75	1.50	EECE 120	Fundamentals of Electrical Circuit Analysis Sessional	0.75	1.5	
14.	ME 180	Basic Engineering Drawing	1.50	3.00	ME 180	Basic Engineering Drawing	1.5	3.0	

		Engineering	• • • •			Engineering		
15.	ME 253	Mechanics	3.00	3.00	ME 253	Mechanics	3.0	3.0
16.	ME 254	Engineering Mechanics Sessional	0.75	1.50	ME 254	Engineering Mechanics Sessional	0.75	1.5
					,			
17.	CSE 121	Introduction to Computer Science and Programming Language	3.00	3.00	CSE 121	Introduction to Computer Science and Programming Language	3.0	3.0
18.	CSE 122	Computer Science & Programming Language Sessional	0.75	1.50	CSE 122	Introduction to Computer Science and Programming Language Sessional	0.75	1.5
19.	NE 101	Introduction to Nuclear Engineering	3.00	3.00	NE 101	Introduction to Nuclear Engineering	3.0	3.0
20.	NE 105	Fundamental of Atomic an	3.00	3.00	NE 105	Fundamentals of Atomic and Nuclear Physics	3.0	3.0
		d Nuclear Physics				Providence (1 C		
21.	NE 141	Fundamental of Thermodynamics	3.00	3.00	NE 141	Fundamentals of Thermodynamics	3.0	3.0
22.	NE 207	Reactor Theory and Analysis - I	3.00	3.00	NE 207	Reactor Theory and Analysis-I	3.0	3.0
23.	NE 244	Fundamentals of Heat Transfer and Thermal Engineering Sessional	1.50	3.00	NE 244	Fundamentals of Heat Transfer and Thermal Engineering Sessional	1.5	3.0
24.	NE 203	Introduction to Nuclear and Radio Chemistry	3.00	3.00	NE 203	Introduction to Nuclear and Radio Chemistry	3.0	3.0
25.	NE 204	Introduction to Nuclear and Radio Chemistry Sessional	0.75	1.50	NE 204	Introduction to Nuclear and Radio Chemistry Sessional	0.75	1.5
26.	NE 261	Numerical Methods in Nuclear Engineering Analysis	3.00	3.00	NE 261	Numerical Methods in Nuclear Engineering Analysis	3.0	3.0
27.	NE 262	Numerical Methods in Nuclear Engineering	1.50	3.00	NE 262	Numerical Methods in Nuclear Engineering Analysis Sessional	1.5	3.0
28.	NE 251	Sessional Nuclear Materials	3.00	3.00	NE 251	Nuclear Materials	3.0	3.0
29.	NE 251	Nuclear Materials	1.50	3.00	NE 251	Nuclear Materials	1.5	3.0
۵).	111 232	Sessional Radiation	1.50	3.00	NE 301	Sessional Radiation Detection	3.0	3.0
30.	NE 301	Detection and Measurement	3.00	3.00	INE 301	and Measurement	3.0	5.0

31.	NE 302	Radiation Detection and Measurement Sessional	0.75	1.50	NE 302	Radiation Detection and Measurement Sessional	0.75	1.5
32.	NE 305	Nuclear Reactor Thermal Hydraulics	3.00	3.00	NE 355	Nuclear Reactor Thermal Hydraulics	3.0	3.0
33.	NE 306	Nuclear Reactor Thermal Hydraulics Sessional	1.50	3.00	NE 356	Nuclear Reactor Thermal Hydraulics Sessional	1.5	3.0
34.	NE 409	Nuclear Fuel Cycle and Radioactive Waste Management	3.00	3.00	NE 409	Nuclear Fuel Cycle and Radioactive Waste Management	3.0	3.0
35.	NE 333	Reactor Instrumentation and Control	3.00	3.00	NE 333	Reactor Instrumentation and Control	3.0	3.0
36.	NE 351	Fluid Mechanics and Machinery	3.00	3.00	NE 305	Fluid Mechanics and Machinery	3.0	3.0
37.	NE 352	Fluid Mechanics and Machinery Sessional	0.75	1.50	NE 306	Fluid Mechanics and Machinery Sessional	0.75	1.5
38.	NE 321	Reactor Operation and Safety	3.00	3.00	NE 321	Reactor Operation and Safety	3.0	3.0
39.	NE 317	Nuclear Security and Safeguard Engineering	3.00	3.00	NE 317	Nuclear Security and Safeguard Engineering	3.0	3.0
40.	NE 353	Mechanics of Materials	3.00	3.00	NE 353	Mechanics of Materials	3.0	3.0
41.	NE 354	Mechanics of Materials Sessional	0.75	1.50	NE 354	Mechanics of Materials Sessional	0.75	1.5
42.	NE 331	Automation, Robotics and Linear Control Systems	3.00	3.00	NE 331	Automation and Control Engineering	3.0	3.0
43.	NE 307	Reactor Theory and Analysis - II	3.00	3.00	NE 307	Reactor Theory and Analysis - II	3.0	3.0
44.	NE 320	Industrial Training	1.00	0.00	NE 320	Industrial Training	1.5	0.00
45.	NE 427	Nuclear Power Plant Engineering	3.00	3.00	NE 427	Nuclear Power Plant Engineering	3.0	3.0
46.	NE 400	Final Year Design and Research Project	6.00	12.00	NE 400	Final Year Design and Research Project	6.0	12.0
47.	NE 417	Nuclear Accidents Analysis and Radiological Emergency	3.00	3.00	NE 417	Nuclear Accidents Analysis and Radiological Emergency	3.0	3.0

48.	NE 431	Power System Engineering and Grid Interface with Nuclear Power Plants	3.00	3.00	NE 431	Power System Engineering and Interface of Nuclear Power Plant with Grid System	3.0	3.0
49.	NE 459	Computational Fluid Dynamics (CFD)	3.00	3.00	NE 459	Computational Fluid Dynamics (CFD)	3.0	3.0
50.	NE 433	Fundamentals of Fusion Engineering	3.00	3.00	NE 433	Fundamentals of Fusion Engineering	3.0	3.0
		Medical Applications of Nuclear Technology			NE 413	Medical Applications of Nuclear	3.0	3.0
51.	NE 413		3.00	3.00		Technology		
52.	NE 405	Nuclear Chemical Engineering and	3.00	3.00	NE 405	Nuclear Chemical Engineering and	3.0	3.0
		Corrosion				Corrosion		
53.	NE 407	Non-Destructive Testing and Evaluation	3.00	3.00	NE 407	Non-Destructive Testing and	3.0	3.0
						Evaluation		